Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Morrey space

Author: Cristina T. Zorko
Journal: Proc. Amer. Math. Soc. 98 (1986), 586-592
MSC: Primary 46E35; Secondary 42B30
MathSciNet review: 861756
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ 1 \leq p < \infty $, $ \Omega $ an open and bounded subset of $ {R^n}$, and a nonincreasing and nonnegative function $ \varphi $ defined in $ (0,{\rho _0}]$, $ {\rho _0} = \operatorname{diam} \Omega $, we introduce the space $ \mathcal{M}_{\varphi ,0}^p(\Omega )$ of locally integrable functions satisfying

$\displaystyle {\inf _{c \in C}}\left\{ {\int\limits_{B({x_0},\rho ) \cap \Omega... ...) - c{\vert^p}dx} } \right\} \leq A\vert B({x_0},\rho )\vert{\varphi ^p}(\rho )$

for every $ {x_0} \in \Omega $ and $ 0 < \rho \leq {\rho _0}$, where $ \vert B({x_0},\rho )\vert$ denotes the volume of the ball centered in $ {x_0}$ and radius $ \rho $. The constant $ A > 0$ does not depend on $ ({x_0},\rho )$.

(i) We list some results on the structure, regularity, and density properties of the space so defined.

(ii) $ \mathcal{M}_{\varphi ,0}^p$ is represented as the dual of an atomic space.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 42B30

Retrieve articles in all journals with MSC: 46E35, 42B30

Additional Information

PII: S 0002-9939(1986)0861756-X
Keywords: Mean oscillation, Morey space, density, duality
Article copyright: © Copyright 1986 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia