Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extreme points in $ C(K,L\sp \varphi(\mu))$


Author: Ryszard Grząślewicz
Journal: Proc. Amer. Math. Soc. 98 (1986), 611-614
MSC: Primary 46E40; Secondary 46A55, 46E30
DOI: https://doi.org/10.1090/S0002-9939-1986-0861761-3
MathSciNet review: 861761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {L^\phi }(\mu )$ denote an Orlicz space and let $ \phi $ satisfy the condition $ {\Delta _2}$. It is shown that the extreme points of the unit ball of the space of continuous functions from a compact Hausdorff space $ K$ into $ {L^\phi }(\mu )$ with supremum norm on $ C(K,{L^\phi }(\mu ))$ are precisely the functions with values in the set of extreme points of the unit ball of $ {\text{of }}{L^\phi }(\mu )$.


References [Enhancements On Off] (What's this?)

  • [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach Spaces, Ann. of Math. (2) 88 (1968), 35-46. MR 0228983 (37:4562)
  • [2] R. M. Blumenthal, J. Lindenstrauss, and R. R. Phelps, Extreme operators into $ C(K)$, Pacific J. Math. 15 (1965), 747-756. MR 0209862 (35:758)
  • [3] A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193-203. MR 0467249 (57:7113)
  • [4] N. Dunford and J. T. Schwartz, Linear operators I: General theory, Pure Appl. Math., vol. 7, Interscience, New York, 1958. MR 0117523 (22:8302)
  • [5] A. Gendler, Extreme operators in the unit ball of $ L(C(X),C(Y))$ over the complex field, Proc. Amer. Math. Soc. 57 (1976), 85-88. MR 0405173 (53:8967)
  • [6] P. Greim, An extremal vector-valued $ {L^p}$-function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), 65-68. MR 633279 (83c:46034)
  • [7] R. Grzaślewicz, Finite dimensional Orlicz spaces, Bull. Acad. Polon. Sci. 33 (1985), 277-283. MR 816376 (87d:46032)
  • [8] A. Iwanik, Extreme contractions on certain function spaces, Colloq. Math. 40 (1978), 147-153. MR 529807 (80f:47025)
  • [9] M. A. Krasnosel'skii and Y. B. Rutickii, Convex functions and Orlicz spaces, Problems of Contemporary Math., Gosudarst. Izdat. Fiz.-Mat. Lit., Moscow, 1958. (Russian) MR 0106412 (21:5144)
  • [10] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382. MR 0077107 (17:990e)
  • [11] P. D. Morris and R. R. Phelps, Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. MR 0262804 (41:7409)
  • [12] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. MR 0450938 (56:9228)
  • [13] M. Sharir, Charaterization and properties of extreme operators into $ C(Y)$, Israel J. Math. 12 (1972), 174-183. MR 0317026 (47:5574)
  • [14] M. Sharir, A counterexample on extreme operators, Israel J. Math. 24 (1976), 320-328. MR 0438177 (55:11096)
  • [15] -, A non-nice extreme operator, Israel J. Math. 26 (1977), 306-312. MR 0454722 (56:12970)
  • [16] -, A note on extreme elements in $ {A_0}(K,E)$, Proc. Amer. Math. Soc. 46 (1974), 244-246. MR 0374879 (51:11075)
  • [17] B. Turett, Rotundity of Orlicz spaces, Proc. Acad. Amsterdam A 79 (1976), 462-469. MR 0428028 (55:1058)
  • [18] D. Werner, Extreme points in function spaces, Proc. Amer. Math. Soc. 89 (1983), 598-600. MR 718980 (84m:46041)
  • [19] -, Extreme points in space of operators and vector-valued measures, Proc. of the 12th Winter School, Suppl. Rend. Circ. Mat. Palermo. Ser. II, No. 5, 1984, pp. 135-143. MR 781945 (86k:47033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46A55, 46E30

Retrieve articles in all journals with MSC: 46E40, 46A55, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0861761-3
Keywords: Extreme point, space of vector-valued functions, Orlicz space
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society