Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal degrees of faithful characters of finite groups with a T.I. Sylow $ p$-subgroup


Authors: T. R. Berger, P. Landrock and G. O. Michler
Journal: Proc. Amer. Math. Soc. 99 (1987), 15-21
MSC: Primary 20C15
DOI: https://doi.org/10.1090/S0002-9939-1987-0866421-1
MathSciNet review: 866421
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the classification of the finite simple groups we show in this article that a faithful complex character $ \chi $ of a finite group $ G$ with a nonnormal T.I. Sylow $ p$-subgroup $ P$ has degree $ \chi (1){\text{ > }}\sqrt {\left\vert P \right\vert} - 1$. This result verifies a conjecture of H. S. Leonard [10].


References [Enhancements On Off] (What's this?)

  • [1] W. Feit, The representation theory of finite groups, North-Holland, Amsterdam, 1982. MR 83g 20001 MR 661045 (83g:20001)
  • [2] D. Gorenstein, Finite groups, Harper & Row, New York, 1968. MR 38 229 MR 0231903 (38:229)
  • [3] -, Finite simple groups, Plenum Press, New York, 1982. MR 84j 20002
  • [4] D. Gorenstein and R. Lyons, On finite groups of characteristic $ 2$-type, Mem. Amer. Math. Soc. No. 276 (1983). MR 82h 20021 MR 690900 (84g:20025)
  • [5] B. Huppert, Endliche Gruppen. I, Springer, Heidelberg, 1967. MR 37 302 MR 0224703 (37:302)
  • [6] B. Huppert and N. Blackburn, Finite groups. II, Springer, Heidelberg, 1982. MR 84i 20001a MR 650245 (84i:20001a)
  • [7] Z. Janko, A new finite simple group of order 86775571046077562880 which possesses $ {M_{24}}$ and the full cover of $ {M_{22}}$ as subgroups, J. Algebra 42 (1976), 564-596. MR 55 5734 MR 0432751 (55:5734)
  • [8] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR 50 13299 MR 0360852 (50:13299)
  • [9] P. Landrock, Finite group algebras and their modules, Cambridge Univ. Press, Cambridge, 1983. MR 737910 (85h:20002)
  • [10] H. S. Leonard, On finite groups whose $ p$-Sylow subgroup is a T. I. set, Proc. Amer. Math. Soc. 19 (1968), 667-670. MR 37 4168. MR 0228588 (37:4168)
  • [11] J. Neubüser, H. Pahlings, and W. Plesken, CAS; Design and use of a system for the handling of characters of finite groups, Proc. Conf. on Computational Group Theory, Academic Press, London, 1984, pp. 195-247. MR 760658 (86i:20004)
  • [12] D. A. Sibley, Finite linear groups with a strongly self-centralizing Sylow subgroup. II, J. Algebra 36 (1975), 319-332. MR 52 3305. MR 0382421 (52:3305)
  • [13] M. Suzuki, Finite groups of even order in which Sylow $ 2$-groups are independent, Ann. of Math. 80 (1964), 58-77. MR 29 145 MR 0162841 (29:145)
  • [14] H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 33 5752 MR 0197587 (33:5752)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15

Retrieve articles in all journals with MSC: 20C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866421-1
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society