Continuous functions on multipolar sets

Author:
Ramasamy Jesuraj

Journal:
Proc. Amer. Math. Soc. **99** (1987), 331-339

MSC:
Primary 31D05

MathSciNet review:
870796

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a product of Brelot harmonic spaces each of which has a bounded potential, and let be a compact subset of . Then, is an -polar set with the property that every -section of through any point in is polar if and only if every positive continuous function on can be extended to a continuous potential on . Further, it has been shown that if is a nonnegative continuus function on with compact support, then , the multireduced function of over , is also a continuous function on .

**[1]**M. Brelot,*Lectures on potential theory*, Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. Lectures on Mathematics, vol. 19, Tata Institute of Fundamental Research, Bombay, 1960. MR**0118980****[2]**Corneliu Constantinescu and Aurel Cornea,*Potential theory on harmonic spaces*, Springer-Verlag, New York-Heidelberg, 1972. With a preface by H. Bauer; Die Grundlehren der mathematischen Wissenschaften, Band 158. MR**0419799****[3]**Kohur Gowrisankaran,*Multiply harmonic functions*, Nagoya Math. J.**28**(1966), 27–48. MR**0209513****[4]**Kohur Gowrisankaran,*Multiply superharmonic functions*, Ann. Inst. Fourier (Grenoble)**25**(1975), no. 3-4, xv, 235–244 (English, with French summary). Collection of articles dedicated to Marcel Brelot on the occasion of his 70th birthday. MR**0402096****[5]**R.-M. Hervé,*Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel*, Ann. Inst. Fourier (Grenoble)**12**(1962), 415–571 (French). MR**0139756****[6]**R. Jesuraj,*Continuous functions and exceptional sets in potential theory*, Ph.D. Thesis, McGill Univ., Montreal, Quebec, 1981.**[7]**Ramasamy Jesuraj,*Continuous functions on polar sets*, Proc. Amer. Math. Soc.**93**(1985), no. 2, 262–266. MR**770533**, 10.1090/S0002-9939-1985-0770533-9**[8]**David Singman,*Exceptional sets in a product of harmonic spaces*, Math. Ann.**262**(1983), no. 1, 29–43. MR**690005**, 10.1007/BF01474168

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
31D05

Retrieve articles in all journals with MSC: 31D05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1987-0870796-7

Article copyright:
© Copyright 1987
American Mathematical Society