Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Similarity of a linear strict set-contraction and the radius of the essential spectrum

Author: Mau-Hsiang Shih
Journal: Proc. Amer. Math. Soc. 100 (1987), 137-139
MSC: Primary 47A65
MathSciNet review: 883416
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ A$ is a bounded linear operator on a Hilbert space, define $ {r_e}(A)$, the essential spectral radius of $ A$, by

$\displaystyle {r_e}(A): = \sup \{ \vert\lambda \vert:\lambda \in \operatorname{ess}(A) = \operatorname{essential}\;\operatorname{spectrum}\;{\text{of}}\;A\} .$

It is shown that

$\displaystyle {r_e}(A) = \operatorname{inf}\{ \alpha ({S^{ - 1}}AS)\vert S:H \t... ...;{\text{bounded}}\;{\text{invertible}}\;{\text{linear}}\;\operatorname{map}\} ,$

where $ \alpha $ is the Kuratowski measure of noncompactness. As a consequence, a charcterization of the similarity of a linear strict set-contraction is obtained.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65

Retrieve articles in all journals with MSC: 47A65

Additional Information

PII: S 0002-9939(1987)0883416-2
Keywords: Essential spectrum, $ k$-set-contraction, measure of noncompactness, similarity of operators
Article copyright: © Copyright 1987 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia