Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The locally finite topology on $ 2\sp X$


Authors: G. A. Beer, C. J. Himmelberg, K. Prikry and F. S. Van Vleck
Journal: Proc. Amer. Math. Soc. 101 (1987), 168-172
MSC: Primary 54B20; Secondary 54A10
MathSciNet review: 897090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a metrizable space. A Vietoris-type topology, called the locally finite topology, is defined on the hyperspace $ {2^X}$ of all closed, nonempty subsets of $ X$. We show that the locally finite topology coincides with the supremum of all Hausdorff metric topologies corresponding to equivalent metrics on $ X$. We also investigate when the locally finite topology coincides with the more usual topologies on $ {2^X}$ and when the locally finite topology is metrizable.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B20, 54A10

Retrieve articles in all journals with MSC: 54B20, 54A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0897090-2
PII: S 0002-9939(1987)0897090-2
Keywords: Hyperspaces, locally finite topology, Vietoris topology, Hausdorff metric topology, supremum topology, coincidences, UC space
Article copyright: © Copyright 1987 American Mathematical Society