The locally finite topology on

Authors:
G. A. Beer, C. J. Himmelberg, K. Prikry and F. S. Van Vleck

Journal:
Proc. Amer. Math. Soc. **101** (1987), 168-172

MSC:
Primary 54B20; Secondary 54A10

MathSciNet review:
897090

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a metrizable space. A Vietoris-type topology, called the locally finite topology, is defined on the hyperspace of all closed, nonempty subsets of . We show that the locally finite topology coincides with the supremum of all Hausdorff metric topologies corresponding to equivalent metrics on . We also investigate when the locally finite topology coincides with the more usual topologies on and when the locally finite topology is metrizable.

**[A]**Masahiko Atsuji,*Uniform continuity of continuous functions of metric spaces*, Pacific J. Math.**8**(1958), 11–16; erratum, 941. MR**0099023****[B]**Gerald Beer,*Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance*, Proc. Amer. Math. Soc.**95**(1985), no. 4, 653–658. MR**810180**, 10.1090/S0002-9939-1985-0810180-3**[D]**James Dugundji,*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606****[F]**Oskar Feichtinger,*Properties of the 𝜆 topology. (Preliminary report)*, Set-Valued Mappings, Selections and Topological Properties of 2^{𝑋} (Proc. Conf., SUNY, Buffalo, N.Y., 1969) Lecture Notes in Mathematics, Vol. 171, Springer, Berlin, 1970, pp. 17–23. MR**0282350****[H]**C. J. Himmelberg,*Measurable relations*, Fund. Math.**87**(1975), 53–72. MR**0367142****[HPVV]**C. J. Himmelberg, F. S. Van Vleck, and K. Prikry,*The Hausdorff metric and measurable selections*, Topology Appl.**20**(1985), no. 2, 121–133. MR**800842**, 10.1016/0166-8641(85)90072-0**[KT]**Erwin Klein and Anthony C. Thompson,*Theory of correspondences*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR**752692****[Ma]**M. Marjanović,*Topologies on collections of closed subsets*, Publ. Inst. Math. (Beograd) (N.S.)**6 (20)**(1966), 125–130. MR**0205214****[Mi]**Ernest Michael,*Topologies on spaces of subsets*, Trans. Amer. Math. Soc.**71**(1951), 152–182. MR**0042109**, 10.1090/S0002-9947-1951-0042109-4**[N]**Jun-iti Nagata,*On the uniform topology of bicompactifications*, J. Inst. Polytech. Osaka City Univ. Ser. A. Math.**1**(1950), 28–38. MR**0037501****[R]**John Rainwater,*Spaces whose finest uniformity is metric*, Pacific J. Math.**9**(1959), 567–570. MR**0106448**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54B20,
54A10

Retrieve articles in all journals with MSC: 54B20, 54A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0897090-2

Keywords:
Hyperspaces,
locally finite topology,
Vietoris topology,
Hausdorff metric topology,
supremum topology,
coincidences,
UC space

Article copyright:
© Copyright 1987
American Mathematical Society