Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The gap between $ {\rm cmp}\,X$ and $ {\rm def}\,X$ can be arbitrarily large

Author: Takashi Kimura
Journal: Proc. Amer. Math. Soc. 102 (1988), 1077-1080
MSC: Primary 54D35; Secondary 54F45
MathSciNet review: 934893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a separable metrizable space $ X$ with def $ X - {\text{cmp}}\;X = n$ for every $ n \in \mathbb{N}$.

References [Enhancements On Off] (What's this?)

  • [1] R. Engelking, Dimension theory, PWN, Warszawa, 1978. MR 0482697 (58:2753b)
  • [2] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactnesss, Fund. Math. 58 (1966), 201-218. MR 0196704 (33:4890)
  • [3] J. van Mill, Review of R. Pol's paper [5], MR 85b:54041.
  • [4] K. Nagami, Dimension theory, Academic Press, New York, 1970. MR 0271918 (42:6799)
  • [5] R. Pol, A counterexample to J. de Groot's conjecture cmp = def, Bull. Acad. Polon. Sci. 30 (1982), 461-464. MR 703574 (85b:54041)
  • [6] L. R. Rubin, R. M. Schori, and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), 93-102. MR 519716 (80e:54049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54F45

Retrieve articles in all journals with MSC: 54D35, 54F45

Additional Information

Keywords: Compactification, dimension, compactness degree, compactness deficiency
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society