Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Products of completion regular measures


Author: Constantinos Gryllakis
Journal: Proc. Amer. Math. Soc. 103 (1988), 563-568
MSC: Primary 28C15; Secondary 28A35
DOI: https://doi.org/10.1090/S0002-9939-1988-0943085-0
MathSciNet review: 943085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X = {\prod _{i \in I}}{X_i}$ and $ Y = {\prod _{j \in J}}{Y_j}$, where all $ {X_i},{Y_j}$ are separable metric spaces. Let $ \mu $ and $ \nu $ be completion regular Radon probability measures on $ X$ and $ Y$ respectively. Then $ \mu \times \nu $ on $ X \times Y$ is completion regular.

This solves a problem of J. R. Choksi and D. H. Fremlin.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C15, 28A35

Retrieve articles in all journals with MSC: 28C15, 28A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943085-0
Article copyright: © Copyright 1988 American Mathematical Society