The influence of the initial distribution on a random walk
Author:
Wolfgang Stadje
Journal:
Proc. Amer. Math. Soc. 103 (1988), 602606
MSC:
Primary 60J15; Secondary 60F99, 60G50
MathSciNet review:
943090
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be i.i.d. random variables, ; let and be independent of . We study the total variation distance between the distributions of and , especially its speed of convergence to 0 in the case that some is not singular.
 [L]
Leo
Breiman, Probability, AddisonWesley Publishing Company,
Reading, Mass., 1968. MR 0229267
(37 #4841)
 [W]
Feller (1971), An introduction to probability theory and its applications. II, 2nd ed., Wiley, New York.
 [T]
Torgny
Lindvall, A probabilistic proof of Blackwell’s renewal
theorem, Ann. Probability 5 (1977), no. 3,
482–485. MR 0440726
(55 #13597)
 [L]
L.
A. Shepp, A local limit theorem, Ann. Math. Statist.
35 (1964), 419–423. MR 0166817
(29 #4090)
 [C]
Charles
Stone, A local limit theorem for nonlattice multidimensional
distribution functions, Ann. Math. Statist. 36
(1965), 546–551. MR 0175166
(30 #5351)
 1.
Charles
Stone, On local and ratio limit theorems, Proc. Fifth Berkeley
Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol.
II: Contributions to Probability Theory, Part 2, Univ. California Press,
Berkeley, Calif., 1967, pp. 217–224. MR 0222939
(36 #5989)
 [L]
 Breiman (1968), Probability, AddisonWesley, Reading, Mass. MR 0229267 (37:4841)
 [W]
 Feller (1971), An introduction to probability theory and its applications. II, 2nd ed., Wiley, New York.
 [T]
 Lindvall (1977), A probabilistic proof of Blackwell's renewal theorem, Ann. Prob. 5, 482485. MR 0440726 (55:13597)
 [L]
 A. Shepp (1964), A local limit theorem, Ann. Math. Statist. 35, 419423. MR 0166817 (29:4090)
 [C]
 J. Stone (1965), A local limit theorem for multidimensional distribution functions, Ann. Math. Statist. 36, 546551. MR 0175166 (30:5351)
 1.
 (1967), On local and ratio limit theorems, Proc. Fifth Berkeley Sympos. Math. Statist. and Prob., vol. II, pp. 217224, Univ. of California Press, Berkeley, Calif. MR 0222939 (36:5989)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
60J15,
60F99,
60G50
Retrieve articles in all journals
with MSC:
60J15,
60F99,
60G50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198809430904
PII:
S 00029939(1988)09430904
Article copyright:
© Copyright 1988 American Mathematical Society
