Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic behavior of a class of nonlinear differential equations of $ n$th order


Author: Qingkai Kong
Journal: Proc. Amer. Math. Soc. 103 (1988), 831-838
MSC: Primary 34E05; Secondary 34A34
DOI: https://doi.org/10.1090/S0002-9939-1988-0947667-1
MathSciNet review: 947667
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a result of the asymptotic behavior of the $ n$th order equation $ {u^{(n)}} + f(t,u,u', \ldots ,{u^{(n - 1)}}) = 0$ under some assumptions. For $ n = 2$ and $ f(t,u,u') \equiv f(t,u)$, it revises the result given by Jingcheng Tong, which is not true in general.


References [Enhancements On Off] (What's this?)

  • [1] Jingcheng Tong, The asymptotic behavior of a class of nonlinear differential equations of second order, Proc. Amer. Math. Soc. 84 (1982), 235-236. MR 637175 (83d:34062)
  • [2] D. S. Cohen, The asymptotic behavior of a class of nonlinear differential equations, Proc. Amer. Math. Soc. 18 (1967), 607-609. MR 0212289 (35:3163)
  • [3] P. R. Beesack, On Lakshmikantham's comparison method for Gronwall inequalities, Ann. Polon. Math. 35 (1977), 187-222. MR 0460764 (57:757)
  • [4] U. D. Dhongade and S. G. deo, A nonlinear generalization of Bihari's inequality, Proc. Amer. Math. Soc. 54 (1976), 211-216. MR 0430694 (55:3699)
  • [5] K. Kreith, Extremal solutions for a class of nonlinear differential equations, Proc. Amer. Math. Soc. 79 (1980), 415-421. MR 567983 (81d:34028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34E05, 34A34

Retrieve articles in all journals with MSC: 34E05, 34A34


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947667-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society