Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Closed sets without measurable matching


Author: M. Laczkovich
Journal: Proc. Amer. Math. Soc. 103 (1988), 894-896
MSC: Primary 28A75; Secondary 28B20
DOI: https://doi.org/10.1090/S0002-9939-1988-0947676-2
MathSciNet review: 947676
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a rectangle in the unit square such that its perimeter contains a matching (i.e. the graph of a bijection of the unit interval onto itself) but does not contain a Borel matching or a matching measurable with respect to the linear measure.


References [Enhancements On Off] (What's this?)

  • [1] B. Bollobás, Graph theory, Graduate Texts in Math., vol. 63, Springer-Verlag, Berlin and New York, 1979. MR 536131 (80j:05053)
  • [2] S. Graf and R. D. Mauldin, Measurable one-to-one selections and transition kernels, Amer. J. Math. 107 (1985), 407-426. MR 784290 (86e:54044)
  • [3] P. R. Halmos, Lectures on ergodic theory, Chelsea, 1956. MR 0097489 (20:3958)
  • [4] J. Kaniewski and C. A. Rogers, Double uniformization, J. London Math. Soc. (2) 22 (1980), 521-533. MR 596330 (82d:04002)
  • [5] D. König, Sur les correspondences multivoques des ensembles, Fund. Math. 8 (1926), 114-134.
  • [6] R. D. Mauldin, One-to-one selections-marriage theorems, Amer. J. Math. 104 (1982), 823-828. MR 667537 (84b:28013)
  • [7] R. Rado, Factorization of even graphs, Quart. J. Math. Oxford Ser. 20 (1949), 95-104. MR 0030202 (10:728f)
  • [8] V. N. Sudakov, On independent complementation to two partitions in the case when there exists a bounded density, Proc. Steklov Inst. Math. 111 (1970), 3-11 (Russian). MR 0290423 (44:7604)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A75, 28B20

Retrieve articles in all journals with MSC: 28A75, 28B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947676-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society