Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subnormal elements of $ C\sp *$-algebras


Author: L. R. Williams
Journal: Proc. Amer. Math. Soc. 103 (1988), 897-901
MSC: Primary 46L05; Secondary 47B20
DOI: https://doi.org/10.1090/S0002-9939-1988-0947677-4
MathSciNet review: 947677
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algebraic characterization of a subnormal operator on Hilbert space is given. The result also characterizes subnormal elements of certain abstract $ {C^ * }$-algebras


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, Some questions about slightly abnormal operators, Lecture Notes from a University of Michigan Seminar, 1962.
  • [2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 0068129 (16:835a)
  • [3] J. W. Bunce, A universal diagram property of minimal normal extensions, Proc. Amer. Math. Soc. 69 (1978), 103-108. MR 0482331 (58:2404)
  • [4] J. W. Bunce and J. A. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc. 63 (1977), 107-110. MR 0435912 (55:8863)
  • [5] J. Conway, Subnormal operators, Research Notes in Math., no. 51, Pitman, Boston, Mass., 1981. MR 634507 (83i:47030)
  • [6] -, The dual of a subnormal operator, J. Operator Theory 5 (1981), 195-211. MR 617974 (84j:47037)
  • [7] M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math. 35 (1973), 61-64. MR 0328652 (48:6994)
  • [8] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil Math. 2 (1950), 125-134. MR 0044036 (13:359b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 47B20

Retrieve articles in all journals with MSC: 46L05, 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947677-4
Keywords: Subnormal operator, $ {C^ * }$-algebra, isometry, dual of a subnormal operator
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society