Cesàro and Borel-type summability

Authors:
David Borwein and Tom Markovich

Journal:
Proc. Amer. Math. Soc. **103** (1988), 1108-1112

MSC:
Primary 40G05; Secondary 40E05, 40G10

MathSciNet review:
954991

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Though summability of a series by the Cesàro method does not in general imply its summability by the Borel-type method , it is shown that the implication holds under an additional condition.

**[1]**D. Borwein,*A Tauberian theorem for Borel-type methods of summability*, Canad. J. Math.**21**(1969), 740–747. MR**0243233****[2]**D. Borwein and T. Markovich,*A Tauberian theorem concerning Borel-type and Cesàro methods of summability*, (submitted).**[3]**Gerhard Faulhaber,*Äquivalenzsätze für die Kreisverfahren der Limitierungstheorie*, Math. Z.**66**(1956), 34–52 (German). MR**0082572****[4]**G. H. Hardy and J. E. Littlewood,*Theorems concerning the summability of series by Borel's exponential method*, Rend. Circ. Mat. Palermo**41**(1916), 36-53.**[5]**G. H. Hardy,*Divergent Series*, Oxford, at the Clarendon Press, 1949. MR**0030620****[6]**J. M. Hyslop,*Note on certain related conditions in the theory of Cesàro summability*, Proc. Edinburgh Math. Soc. (2)**6**(1940), 166–171. MR**0002638****[7]**-,*The generalisation of a theorem on Borel summability*, Proc. London Math. Soc. (2)**41**(1936), 243-256.**[8]**B. Kwee,*An improvement on a theorem of Hardy and Littlewood*, J. London Math. Soc. (2)**28**(1983), no. 1, 93–102. MR**703468**, 10.1112/jlms/s2-28.1.93**[9]**Amram Meir,*Tauberian constants for a family of transformations*, Ann. of Math. (2)**78**(1963), 594–599. MR**0166519****[10]**V. Swaminathan,*A note on the family 𝐹(𝑎,𝑞) of summability methods*, Math. Z.**138**(1974), 119–122. MR**0348330**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40G05,
40E05,
40G10

Retrieve articles in all journals with MSC: 40G05, 40E05, 40G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0954991-5

Article copyright:
© Copyright 1988
American Mathematical Society