Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cesàro and Borel-type summability


Authors: David Borwein and Tom Markovich
Journal: Proc. Amer. Math. Soc. 103 (1988), 1108-1112
MSC: Primary 40G05; Secondary 40E05, 40G10
DOI: https://doi.org/10.1090/S0002-9939-1988-0954991-5
MathSciNet review: 954991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Though summability of a series by the Cesàro method $ {C_p}$ does not in general imply its summability by the Borel-type method $ (B,\alpha ,\beta )$, it is shown that the implication holds under an additional condition.


References [Enhancements On Off] (What's this?)

  • [1] D. Borwein, A Tauberian theorem for Borel-type methods of summability, Canad. J. Math. 21 (1969), 740-747. MR 0243233 (39:4556)
  • [2] D. Borwein and T. Markovich, A Tauberian theorem concerning Borel-type and Cesàro methods of summability, (submitted).
  • [3] G. Faulhaber, Äquivalenzsätze für die Kreisverfahren der Limitierungstheorie, Math. Z. 66 (1956), 34-52. MR 0082572 (18:573a)
  • [4] G. H. Hardy and J. E. Littlewood, Theorems concerning the summability of series by Borel's exponential method, Rend. Circ. Mat. Palermo 41 (1916), 36-53.
  • [5] G. H. Hardy, Divergent series, Oxford, 1949. MR 0030620 (11:25a)
  • [6] J. M. Hyslop, On the summability of series by a method of Valiron, Proc. Edinburgh Math. Soc. (2) 4 (1936), 218-223. MR 0002638 (2:89g)
  • [7] -, The generalisation of a theorem on Borel summability, Proc. London Math. Soc. (2) 41 (1936), 243-256.
  • [8] B. Kwee, An improvement on a theorem of Hardy and Littlewood, J. London Math. Soc. (2) 28 (1983), 93-102. MR 703468 (84m:40011)
  • [9] A. Meir, Tauberian constants for a family of transformations, Ann. of Math. (2) 78 (1963), 594-599. MR 0166519 (29:3794)
  • [10] V. Swaminathan, A note on the family $ F(a,q)$ of summability methods, Math. Z. 138 (1974), 119-122. MR 0348330 (50:828)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40G05, 40E05, 40G10

Retrieve articles in all journals with MSC: 40G05, 40E05, 40G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0954991-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society