Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Korovkin type approximation theorem for set-valued functions

Authors: Klaus Keimel and Walter Roth
Journal: Proc. Amer. Math. Soc. 104 (1988), 819-824
MSC: Primary 41A36
MathSciNet review: 964863
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a contribution to the problem of approximating continuous functions $ F$ defined on a compact Hausdorff space $ X$, where the value $ F(x)$ is a compact convex set in $ {{\mathbf{R}}^n}$ for every $ x$ in $ X$. More specifically we show how to transfer Korovkin type approximation theorems for real-valued continuous functions to this set-valued situation.

References [Enhancements On Off] (What's this?)

  • [1] H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), 245-260. MR 0358178 (50:10643)
  • [2] -, Approximationssätze und abstrakte Ränder, Math. Phys. Sem. Berichte 13 (1976), 141-173.
  • [3] H. Berens and G. G. Lorentz, Theorems of Korovkin type for positive linear operators on Banach lattices, Approximation Theory (G. G. Lorentz, ed.), Academic Press, New York, 1973. MR 0340913 (49:5663)
  • [4] K. Donner, Extension of positive operators and Korovkin theorems, Lecture Notes in Math., Vol. 904, Springer-Verlag, Berlin, Heidelberg and New York, 1982. MR 653635 (83i:46008)
  • [5] H. O. Flösser, Korovkinsche Approximation stetiger Funktionen, Jahrbuch Überblicke Mathematik, 1980, Bibliographisches Institut Mannheim-Wien-Zürich, pp. 93-119. MR 620329 (84m:41035)
  • [6] H. O. Flösser, R. Irmisch and W. Roth, Infimum-stable convex cones and approximation, Proc. London Math. Soc. (3) 42 (1981), 104-120. MR 602125 (82b:46009)
  • [7] A. Jung, Stetige Verbände und Approximationssätze, Diplomarbeit, Darmstadt, 1983.
  • [8] H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, Ges. Abhandlungen, Vol. 2, Leipzig, Berlin, 1911, pp. 131-229.
  • [9] R. A. Vitale, Approximation of convex set-valued functions, J. Approx. Theory 26 (1979), 301-316. MR 550678 (81a:41063)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A36

Retrieve articles in all journals with MSC: 41A36

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society