Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ d$-final continua


Author: John Isbell
Journal: Proc. Amer. Math. Soc. 104 (1988), 953-964
MSC: Primary 54F25; Secondary 54D35, 54F05, 54F50
DOI: https://doi.org/10.1090/S0002-9939-1988-0964879-1
MathSciNet review: 964879
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Hilbert cube is known to be an irreducible quotient of every perfect metric space. Its irreducible quotients are identified: all nondegenerate Peano continua no open set in which is homeomorphic with $ R$. In compact metric spaces, every irreducible surjection $ X \to Y$ embeds a dense $ {G_\delta }$ subset of $ X$ in $ Y$. The Peano continua I which are strongly initial, every irreducible map from a Peano continuum to I being a homeomorphism, are identified: the dendrites the closure of whose end points is zero-dimensional.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110. MR 0035429 (11:733i)
  • [2] H. C. Enos, Coarse uniformities on the rationals, Proc. Amer. Math. Soc. 34 (1972), 623-626. MR 0295283 (45:4351)
  • [3] J. R. Isbell, Uniform neighborhood retracts, Pacific J. Math. 11 (1961), 609-648. MR 0141074 (25:4487)
  • [4] -, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. MR 0358725 (50:11184)
  • [5] -, Function spaces and adjoints, Math. Scand. 36 (1975), 317-339. MR 0405340 (53:9134)
  • [6] P. T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982. MR 698074 (85f:54002)
  • [7] -, Factorization theorems for geometric morphisms. II, Categorical Aspects of Topology and Analysis, Lecture Notes in Math., vol. 915, Springer-Verlag, Berlin-Heidelberg-New York, 1982. MR 659894 (83j:18006)
  • [8] C. Kuratowski, Topologie. II, Monogr. Mat., torn 21, PWN, Warsaw, 1952.
  • [9] A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. MR 0133806 (24:A3631)
  • [10] K. Menger, Kurventheorie, Teubner, Leipzig, 1932.
  • [11] E. E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111-1121. MR 0035430 (11:734a)
  • [12] S. Mrowka, Continuous functions on countable subspaces, Portugal. Math. 29 (1970), 177-180. MR 0293605 (45:2682)
  • [13] E. G. Skljarenko, On perfect bicompact extensions, Dokl. Akad. Nauk SSSR 137 (1961), 39-41=Soviet Math. Dokl. 2 (1961), 238-240. MR 0121777 (22:12511)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F25, 54D35, 54F05, 54F50

Retrieve articles in all journals with MSC: 54F25, 54D35, 54F05, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0964879-1
Keywords: Peano continuum, tree, irreducible map, locale
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society