Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximations and fixed points for condensing non-self-maps defined on a sphere


Author: Tzu-Chu Lin
Journal: Proc. Amer. Math. Soc. 105 (1989), 66-69
MSC: Primary 47H09; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1989-0973838-5
MathSciNet review: 973838
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the validity of an interesting theorem of Ky Fan [Theorem 2, Math. Z. 112 (1969), 234-240] defined on a sphere (the boundary of a closed ball) in an infinite-dimensional Banach space. We will prove that it is true for a continuous condensing map with suitable conditions posed. As applications of our theorem, some fixed point theorems of continuous condensing non-self-maps defined on a sphere are derived. Our results generalize some results of R. Nussbaum [10] and P. Massatt [8].


References [Enhancements On Off] (What's this?)

  • [1] M. Altman, A fixed point theorem in Hilbert space, Bull. Polish Acad. Sci. 5 (1957), 19-22. MR 0087064 (19:297b)
  • [2] F. E. Browder, On a sharpened form of the Schauder fixed point theorem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 4749-4751. MR 0463982 (57:3920)
  • [3] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240. MR 0251603 (40:4830)
  • [4] B. Halpern, Fixed point theorems for set-valued maps in infinite dimensional spaces, Math. Ann. 189 (1970), 87-98. MR 0273479 (42:8357)
  • [5] T. C. Lin, A note on a theorem of Ky Fan, Canad. Math. Bull. 22 (1979), 513-515. MR 563767 (81d:47038)
  • [6] T. C. Lin and C. L. Yen, Applications of the proximity map to fixed point theory, Approximation Theory and Applications (S. P. Singh, ed.), Research Notes in Math., vol. 133, Pitman, 1985, pp. 96-103. MR 879132
  • [7] T. C. Lin and C. L. Yen, Applications of the proximity map to fixed point theorems in Hilbert space, J. Approx. Theory 52 (1988), 141-148. MR 929300 (89h:47089)
  • [8] P. Massatt, A fixed point theorem for $ \alpha $-condensing maps on a sphere, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 323-329. MR 709725 (84g:47048)
  • [9] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89 (1971), 217-258. MR 0312341 (47:903)
  • [10] R. D. Nussbaum, Some fixed point theorems, Bull. Amer. Math. Soc. 77 (1971), 360-365. MR 0284888 (44:2112)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H09, 47H10

Retrieve articles in all journals with MSC: 47H09, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0973838-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society