Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Probability measure functors preserving the ANR-property of metric spaces


Authors: Nguyen To Nhu and Ta Khac Cu
Journal: Proc. Amer. Math. Soc. 106 (1989), 493-501
MSC: Primary 60B05; Secondary 46E27, 54C55
DOI: https://doi.org/10.1090/S0002-9939-1989-0964459-9
MathSciNet review: 964459
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {P_k}\left( X \right)$ denote the set of all probability measures on a metric space $ X$ whose supports consist of no more than $ k$ points, equipped with the Fedorchuk topology. We prove that if $ X \in {\text{ANR}}$ then $ {P_k}\left( X \right) \in {\text{ANR}}$ for every $ k \in {\mathbf{N}}$. This implies that for each $ k \in {\mathbf{N}}$ the functor $ {P_k}$ preserves the topology of separable Hilbert space.


References [Enhancements On Off] (What's this?)

  • [BP] C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Warszawa 1975. MR 0478168 (57:17657)
  • [DT] T. Dobrowolski and H. Torunczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1984), 229-235. MR 623731 (83a:58007)
  • [Fe] V. V. Fedorchuk, Probability measures and absolute neighborhood retracts, Soviet Math. Dokl. 22 (1980), 849-853.
  • [Fr] A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133-142. MR 1563501
  • [M] H. W. Martin, A note on Frink metrization theorem, Rocky Mountain J. Math. 6 (1976), 155-157. MR 0391035 (52:11857)
  • [N1] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 243-254. MR 774515 (86d:54018)
  • [N2] -, Hyperspaces of compact sets in metric linear spaces, Topology Appl. 22 (1986), 109-122. MR 836318 (87e:54027)
  • [N3] -, Orbit spaces of finite groups acting linearly on normed spaces, Bull. Ac. Pol. Math. 32 (1986), 417-424. MR 782757 (86f:54029)
  • [T] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. MR 611763 (82i:57016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B05, 46E27, 54C55

Retrieve articles in all journals with MSC: 60B05, 46E27, 54C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0964459-9
Keywords: ANR, probability measure, Hilbert space
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society