The linear and quadratic Schur subgroups over the -integers of a number field

Author:
Carl R. Riehm

Journal:
Proc. Amer. Math. Soc. **107** (1989), 83-87

MSC:
Primary 11R65; Secondary 11R54, 13A20, 20C10

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979218-0

MathSciNet review:
979218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an algebraic number field and let be a ring of -integers in (where is a set of primes of containing all the archimedean primes); that is to say, is a Dedekind domain whose field of quotients is . In analogy with a theorem of T. Yamada in the case of a field of characteristic 0, it is shown that if is the Schur subgroup of the Brauer group and if , where is any field containing the maximal abelian extension of in , then , i.e. the Brauer classes in are those obtained from by extension of the scalars to . A similar theorem is proved as well in the case of the Schur subgroup of the quadratic Brauer group , where is an involution of .

**[H-T-W]**I. Hambleton, L. Taylor, and E. B. Williams,*An introduction to the maps between surgery obstruction groups*, Algebraic Topology, Aarhus 1982, pp. 49-127; Lecture Notes in Math., vol. 1051, Springer-Verlag, New York, 1984. MR**764576 (86b:57017)****[I]**I. M. Isaacs,*Character theroy of finite groups*, Academic Press, New York, 1976. MR**0460423 (57:417)****[J]**G. J. Janusz,*Tensor products of orders*, J. London Math. Soc. (2)**20**(1979), 186-192. MR**551444 (81g:16009)****[M]**R. Mollin,*The Schur group of a field of characteristic zero*, Pacific J. Math.**76**(1978), 471-478. MR**506148 (80c:12018)****[MO]**I. Reiner,*Maximal orders*, London Math. Soc. Monographs, no. 5, Academic Press, London, 1975.**[O-S]**M. Orzech and C. Small,*The Brauer group of commutative rings*, Lecutre Notes in Pure and Appl. Math., no. 11, Dekker, New York, 1975. MR**0457422 (56:15627)****[R1]**C. Riehm,*The Schur subgroup of the Brauer group of cyclotomic rings of integers*, Proc. Amer. Math. Soc.**103**(1988), 27-30. MR**938638 (89c:13005)****[R2]**C. Riehm,*The quadratic Schur subgroup over local and global fields*Math. Annalen, 283 ((1989), 479-489. MR**985243 (90c:12003)****[S]**D. Saltman,*Azumaya algebras with involution*, J. Algebra**52**(1978), 526-539. MR**495234 (80a:16013)****[Y]**T. Yamada,*The Schur subgroup of the Brauer group*, Lecture Notes in Math., vol. 397, Springer-Verlag, New York, 1974. MR**0347957 (50:456)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11R65,
11R54,
13A20,
20C10

Retrieve articles in all journals with MSC: 11R65, 11R54, 13A20, 20C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979218-0

Keywords:
Schur subgroup,
integral Brauer group,
integral representations,
representations of finite groups,
quadratic Brauer group,
Azumaya algebras,
algebraic number fields

Article copyright:
© Copyright 1989
American Mathematical Society