On the zeros of for certain rational functions

Author:
T. Sheil-Small

Journal:
Proc. Amer. Math. Soc. **107** (1989), 1013-1016

MSC:
Primary 30D15; Secondary 30C15, 30D20

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984814-0

MathSciNet review:
984814

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a nonconstant rational function whose poles are real, simple with each one having a positive residue. Then, if has no nonreal zeros, has the form

**[1]**S. Hellerstein and J. Williamson,*Derivatives of entire functions and a questions of Pólya*, Trans. Amer. Math. Soc.**227**(1977), 227-249. MR**0435393 (55:8353)****[2]**-,*Derivatives of entire functions and a question of Pólya*II, Trans. Amer. Math. Soc.**234**(1977), 497-503. MR**0481004 (58:1151)****[3]**S. Hellerstein, L.-C. Shen and J. Williamson,*Reality of the zeros of an entire function and its derivatives*, Trans. Amer. Math. Soc.**275**(1983), 319-331. MR**678353 (84a:30050)****[4]**T. Sheil-Small,*On the zeros of the derivatives of real entire functions and Wiman's conjecture*, Annals of Math.,**129**(1989), 179-193. MR**979605 (90a:30084)****[5]**L.-C. Shen,*Influence of the distribution of the zeros of an entire function and its second derivative on the growth of the function*, J. London Math. Soc. (2)**31**(1985), 305-320. MR**809952 (88a:30060)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D15,
30C15,
30D20

Retrieve articles in all journals with MSC: 30D15, 30C15, 30D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984814-0

Article copyright:
© Copyright 1989
American Mathematical Society