On the zeros of for certain rational functions

Author:
T. Sheil-Small

Journal:
Proc. Amer. Math. Soc. **107** (1989), 1013-1016

MSC:
Primary 30D15; Secondary 30C15, 30D20

MathSciNet review:
984814

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a nonconstant rational function whose poles are real, simple with each one having a positive residue. Then, if has no nonreal zeros, has the form

**[1]**Simon Hellerstein and Jack Williamson,*Derivatives of entire functions and a question of Pólya*, Trans. Amer. Math. Soc.**227**(1977), 227–249. MR**0435393**, 10.1090/S0002-9947-1977-0435393-4**[2]**Simon Hellerstein and Jack Williamson,*Derivatives of entire functions and a question of Pólya. II*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 497–503. MR**0481004**, 10.1090/S0002-9947-1977-0481004-1**[3]**Simon Hellerstein, Li Chien Shen, and Jack Williamson,*Reality of the zeros of an entire function and its derivatives*, Trans. Amer. Math. Soc.**275**(1983), no. 1, 319–331. MR**678353**, 10.1090/S0002-9947-1983-0678353-3**[4]**T. Sheil-Small,*On the zeros of the derivatives of real entire functions and Wiman’s conjecture*, Ann. of Math. (2)**129**(1989), no. 1, 179–193. MR**979605**, 10.2307/1971490**[5]**Li-Chien Shen,*Influence of the distribution of the zeros of an entire function and its second derivative on the growth of the function*, J. London Math. Soc. (2)**31**(1985), no. 2, 305–320. MR**809952**, 10.1112/jlms/s2-31.2.305

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D15,
30C15,
30D20

Retrieve articles in all journals with MSC: 30D15, 30C15, 30D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984814-0

Article copyright:
© Copyright 1989
American Mathematical Society