Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the zeros of $ L'+L\sp 2$ for certain rational functions $ L$


Author: T. Sheil-Small
Journal: Proc. Amer. Math. Soc. 107 (1989), 1013-1016
MSC: Primary 30D15; Secondary 30C15, 30D20
DOI: https://doi.org/10.1090/S0002-9939-1989-0984814-0
MathSciNet review: 984814
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a nonconstant rational function whose poles are real, simple with each one having a positive residue. Then, if $ L' + {L^2}$ has no nonreal zeros, $ L$ has the form

$\displaystyle L(z) = \sum\limits_{k = 1}^n {\frac{{{\alpha _k}}}{{z - {x_k}}} - az + b,} $

$ {x_k}$ are real, $ {\alpha _k} > 0$ for $ 1 \leq k \leq n,a \geq 0$ and $ b$ is real. In particular, if $ P$ is a polynomial of degree $ \geq 2$, then $ P' + {P^2}$ has nonreal zeros. The result is applied to entire functions in connection with zeros of the derivatives.

References [Enhancements On Off] (What's this?)

  • [1] S. Hellerstein and J. Williamson, Derivatives of entire functions and a questions of Pólya, Trans. Amer. Math. Soc. 227 (1977), 227-249. MR 0435393 (55:8353)
  • [2] -, Derivatives of entire functions and a question of Pólya II, Trans. Amer. Math. Soc. 234 (1977), 497-503. MR 0481004 (58:1151)
  • [3] S. Hellerstein, L.-C. Shen and J. Williamson, Reality of the zeros of an entire function and its derivatives, Trans. Amer. Math. Soc. 275 (1983), 319-331. MR 678353 (84a:30050)
  • [4] T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman's conjecture, Annals of Math., 129 (1989), 179-193. MR 979605 (90a:30084)
  • [5] L.-C. Shen, Influence of the distribution of the zeros of an entire function and its second derivative on the growth of the function, J. London Math. Soc. (2) 31 (1985), 305-320. MR 809952 (88a:30060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D15, 30C15, 30D20

Retrieve articles in all journals with MSC: 30D15, 30C15, 30D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984814-0
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society