Fixed point theorems in product spaces
Author:
Tadeusz Kuczumow
Journal:
Proc. Amer. Math. Soc. 108 (1990), 727729
MSC:
Primary 47H10; Secondary 47H09
MathSciNet review:
991700
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If and are nonempty closed weakly compact subsets of Banach spaces and they have the generic fixed point property for nonexpansive mappings, then in the maximum norm has fixed point property for nonexpansive mappings.
 [1]
Ronald
E. Bruck Jr., Properties of fixedpoint sets of
nonexpansive mappings in Banach spaces, Trans.
Amer. Math. Soc. 179 (1973), 251–262. MR 0324491
(48 #2843), http://dx.doi.org/10.1090/S00029947197303244918
 [2]
Ali
A. Fora, A fixed point theorem for product spaces, Pacific J.
Math. 99 (1982), no. 2, 327–335. MR 658063
(83e:54042)
 [3]
W.
A. Kirk, Fixed point theory for nonexpansive mappings, Fixed
point theory (Sherbrooke, Que., 1980) Lecture Notes in Math.,
vol. 886, Springer, BerlinNew York, 1981, pp. 484–505. MR 643024
(83c:47076)
 [4]
W.
A. Kirk, Fixed point theory for nonexpansive mappings. II,
Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp.
Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983,
pp. 121–140. MR 728596
(85a:47062), http://dx.doi.org/10.1090/conm/018/728596
 [5]
W.
A. Kirk, Nonexpansive mappings in product spaces, setvalued
mappings and 𝑘uniform rotundity, Nonlinear functional
analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc.
Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986,
pp. 51–64. MR 843594
(87i:47068)
 [6]
, Fixed points theorems in product spaces, Operator Equations and Fixed Points (S. P. Singh, V. M. Seghal, and J. H. W. Burry, eds.), Math. Sci. Res. Inst. Korea 1 (1986), 2735.
 [7]
W.
A. Kirk, An iteration process for nonexpansive
mappings with applications to fixed point theory in product
spaces, Proc. Amer. Math. Soc.
107 (1989), no. 2,
411–415. MR
941325 (90a:47146), http://dx.doi.org/10.1090/S00029939198909413256
 [8]
W.
A. Kirk and Carlos
MartínezYañez, Nonexpansive and locally nonexpansive
mappings in product spaces, Nonlinear Anal. 12
(1988), no. 7, 719–725. MR 947884
(89h:47084), http://dx.doi.org/10.1016/0362546X(88)900247
 [9]
W.
A. Kirk and Y.
Sternfeld, The fixed point property for nonexpansive mappings in
certain product spaces, Houston J. Math. 10 (1984),
no. 2, 207–214. MR 744905
(85j:47058)
 [10]
Sam
B. Nadler Jr., Sequences of contractions and fixed points,
Pacific J. Math. 27 (1968), 579–585. MR 0240802
(39 #2147)
 [12]
, The fixed point property for nonexpansive mappings II, Amer. Math. Monthly 87 (1980), 292294.
 [1]
 R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251262. MR 0324491 (48:2843)
 [2]
 A. Fora, A fixed point theorem for product spaces, Pacific J. Math. 99 (1982), 327335. MR 658063 (83e:54042)
 [3]
 W. A. Kirk, Fixed point theory for nonexpansive mappings, Fixed Point Theory (E. Fadell and G. Fournier, eds.), Lecture Notes in Math., no. 886, SpringerVerlag, New York, 1981, pp. 484505. MR 643024 (83c:47076)
 [4]
 , Fixed point theory for nonexpansive mappings II, Fixed Points and Nonexpansive Mappings (R. C. Sine, ed.), Contemp. Math. 18 (1983), 121140. MR 728596 (85a:47062)
 [5]
 , Nonexpansive mappings in product spaces, setvalued mappings and uniform rotundity, Nonlinear Functional Analysis and its Applications (F. E. Browder, ed.), Amer. Math. Soc. Symp. Pure Math., Vol. 45, 1986, pp. 5164. MR 843594 (87i:47068)
 [6]
 , Fixed points theorems in product spaces, Operator Equations and Fixed Points (S. P. Singh, V. M. Seghal, and J. H. W. Burry, eds.), Math. Sci. Res. Inst. Korea 1 (1986), 2735.
 [7]
 , An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc. (to appear). MR 941325 (90a:47146)
 [8]
 W. A. Kirk and C. Martinez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear Anal. 12 (1988), 719725. MR 947884 (89h:47084)
 [9]
 W. A. Kirk and Y. Sternfeld, The fixed point property for nonexpansive mappings in certain product spaces, Houston J. Math. 10 (1984), 207214. MR 744905 (85j:47058)
 [10]
 S. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), 579585. U.S. Reich, The fixed point property for nonexpansive mappings I, Amer. Math. Monthly 83 (1976), 226228. MR 0240802 (39:2147)
 [12]
 , The fixed point property for nonexpansive mappings II, Amer. Math. Monthly 87 (1980), 292294.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47H10,
47H09
Retrieve articles in all journals
with MSC:
47H10,
47H09
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199009917007
PII:
S 00029939(1990)09917007
Keywords:
Nonexpansive mappings,
nonexpansive retracts,
fixed points
Article copyright:
© Copyright 1990
American Mathematical Society
