Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A property of purely infinite simple $ C\sp *$-algebras


Author: Shuang Zhang
Journal: Proc. Amer. Math. Soc. 109 (1990), 717-720
MSC: Primary 46L05
DOI: https://doi.org/10.1090/S0002-9939-1990-1010004-X
MathSciNet review: 1010004
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An alternative proof is given for the fact ([13]) that a purely infinite, simple $ {C^*}$-algebra has the FS property: the set of self-adjoint elements with finite spectrum is norm dense in the set of all self-adjoint elements. In particular, the Cuntz algebras $ {O_n}(2 \leq n \leq + \infty )$ and the Cuntz-Krieger algebras $ {O_A}$, if $ A$ is an irreducible matrix, have the FS property. This answers a question raised in [2, 2.10] concerning the structure of projections in the Cuntz algebras. Moreover, many corona algebras and multiplier algebras have the FS property.


References [Enhancements On Off] (What's this?)

  • [1] J. Bunce and J. Deddens, A family of simple $ {C^*}$-algebras related to weighted shift operators, J. Funct. Anal. 19 (1975), 13-24. MR 0365157 (51:1410)
  • [2] B. Blackadar, Notes on the structure of projections in simple algebras, Semesterbericht Funktionalanalysis, Tubingen, Wintersemester, 1982/83.
  • [3] B. Blackadar and A. Kumjian, Skew products of relations and structure of simple $ {C^*}$algebras, Math. Z. 189 (1985), 55-63. MR 776536 (86g:46083)
  • [4] L. G. Brown, Stable isomorphism of hereditary subalgebras of $ {C^*}$-algebras, Pacific J. Math. 71 (1977), 335-348. MR 0454645 (56:12894)
  • [5] L. G. Brown and G. K. Pedersen, $ {C^*}$-algebras of real rank zero, preprint, 1989. MR 1120918 (92m:46086)
  • [6] M.-D. Choi and G. Elliott, Density of the self-adjoint elements with finite spectrum in an irrational rotation $ {C^*}$-algebra, preprint.
  • [7] J. Cuntz, $ K$-theory for certain $ {C^*}$-algebras, Ann. of Math. 131 (1981), 181-197. MR 604046 (84c:46058)
  • [8] -, Simple $ {C^*}$-algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • [9] J. Cuntz and W. Krieger, A class of $ {C^*}$-algebras and topological Markov chains, Inventiones Math. 56 (1980), 251-268. MR 561974 (82f:46073a)
  • [10] G. K. Pedersen, The linear span of projections in simple $ {C^*}$-algebras, J. Operator Theory 4 (1980), 289-296. MR 595417 (82b:46078)
  • [11] S. Zhang, $ {K_1}$-groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc. (to appear). MR 998130 (91j:46069)
  • [12] -, On the structure of projections and ideals of corona algebras, Canad. J. Math. 41 (1989), 721-742. MR 1012625 (90h:46094)
  • [13] -, $ {C^*}$-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part I, Part II, Part IV, preprints.
  • [14] -, $ {C^*}$-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part III, Canad. J. Math. (to appear). MR 1043517 (94i:46095)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1010004-X
Keywords: Purely infinite simple $ {C^*}$-algebras, projections, the Cuntz algebras
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society