A property of purely infinite simple -algebras

Author:
Shuang Zhang

Journal:
Proc. Amer. Math. Soc. **109** (1990), 717-720

MSC:
Primary 46L05

DOI:
https://doi.org/10.1090/S0002-9939-1990-1010004-X

MathSciNet review:
1010004

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An alternative proof is given for the fact ([13]) that a purely infinite, simple -algebra has the FS property: the set of self-adjoint elements with finite spectrum is norm dense in the set of all self-adjoint elements. In particular, the Cuntz algebras and the Cuntz-Krieger algebras , if is an irreducible matrix, have the FS property. This answers a question raised in [2, 2.10] concerning the structure of projections in the Cuntz algebras. Moreover, many corona algebras and multiplier algebras have the FS property.

**[1]**J. Bunce and J. Deddens,*A family of simple**-algebras related to weighted shift operators*, J. Funct. Anal.**19**(1975), 13-24. MR**0365157 (51:1410)****[2]**B. Blackadar,*Notes on the structure of projections in simple algebras*, Semesterbericht Funktionalanalysis, Tubingen, Wintersemester, 1982/83.**[3]**B. Blackadar and A. Kumjian,*Skew products of relations and structure of simple**algebras*, Math. Z.**189**(1985), 55-63. MR**776536 (86g:46083)****[4]**L. G. Brown,*Stable isomorphism of hereditary subalgebras of**-algebras*, Pacific J. Math.**71**(1977), 335-348. MR**0454645 (56:12894)****[5]**L. G. Brown and G. K. Pedersen,*-algebras of real rank zero*, preprint, 1989. MR**1120918 (92m:46086)****[6]**M.-D. Choi and G. Elliott,*Density of the self-adjoint elements with finite spectrum in an irrational rotation**-algebra*, preprint.**[7]**J. Cuntz,*-theory for certain**-algebras*, Ann. of Math.**131**(1981), 181-197. MR**604046 (84c:46058)****[8]**-,*Simple**-algebras generated by isometries*, Commun. Math. Phys.**57**(1977), 173-185. MR**0467330 (57:7189)****[9]**J. Cuntz and W. Krieger,*A class of**-algebras and topological Markov chains*, Inventiones Math.**56**(1980), 251-268. MR**561974 (82f:46073a)****[10]**G. K. Pedersen,*The linear span of projections in simple**-algebras*, J. Operator Theory**4**(1980), 289-296. MR**595417 (82b:46078)****[11]**S. Zhang,*-groups, quasidiagonality and interpolation by multiplier projections*, Trans. Amer. Math. Soc. (to appear). MR**998130 (91j:46069)****[12]**-,*On the structure of projections and ideals of corona algebras*, Canad. J. Math.**41**(1989), 721-742. MR**1012625 (90h:46094)****[13]**-,*-algebras with real rank zero and the internal structure of their corona and multiplier algebras*, Part I, Part II, Part IV, preprints.**[14]**-,*-algebras with real rank zero and the internal structure of their corona and multiplier algebras*, Part III, Canad. J. Math. (to appear). MR**1043517 (94i:46095)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05

Retrieve articles in all journals with MSC: 46L05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1010004-X

Keywords:
Purely infinite simple -algebras,
projections,
the Cuntz algebras

Article copyright:
© Copyright 1990
American Mathematical Society