An analogue to Glauberman's -theorem
Author:
Bernd Stellmacher
Journal:
Proc. Amer. Math. Soc. 109 (1990), 925-929
MSC:
Primary 20D20; Secondary 20D25
DOI:
https://doi.org/10.1090/S0002-9939-1990-1013982-8
Erratum:
Proc. Amer. Math. Soc. 114 (1992), null.
MathSciNet review:
1013982
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a finite
-group,
an odd prime. Using certain versions of
-stability it is shown that there exists a nontrivial characteristic subgroup
in
that is normal in every finite
-stable group
satisfying
and
. Moreover,
contains every abelian subgroup of
normalized by
.
- [1]
G. Glauberman, A characteristic subgroup of a
-stable group, Canad. J. Math. 20 (1968), 1101-1135. MR 0230807 (37:6365)
- [2] D. Go1dschmidt, Automorphisms of trivalent graphs, Ann. of Math. 111 (1980), 377-406. MR 569075 (82a:05052)
- [3] D. Gorenstein, Finite groups, Harper & Row, New York. MR 0231903 (38:229)
- [4] A. G. Kurosh, Theory of groups, Chelsea, New York, 1955.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D20, 20D25
Retrieve articles in all journals with MSC: 20D20, 20D25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-1013982-8
Article copyright:
© Copyright 1990
American Mathematical Society