Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The corona property for bounded analytic functions in some Besov spaces


Author: Artur Nicolau
Journal: Proc. Amer. Math. Soc. 110 (1990), 135-140
MSC: Primary 46J15; Secondary 46E35
MathSciNet review: 1017007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the corona theorem for the algebra of bounded analytic functions in the unit disc which are in the Besov space $ {B_p},1 < p < \infty $, is proved.


References [Enhancements On Off] (What's this?)

  • [1] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [2] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [3] Kwang-Nan Chow and David Protas, The maximal ideal space of bounded, analytic, Dirichlet finite functions, Arch. Math. (Basel) 31 (1978/79), 301. MR 521484 (80b:46062)
  • [4] V. V. Peller and S. V. Hruscev, Hankel operators, best approximations, and stationary Gaussian processes, Russian Math. Surveys 37 (1982), 103. MR 643765 (84e:47036)
  • [5] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [6] N. Th. Varopoulos, BMO functions and the $ \bar \partial $-equation, Pacific J. Math. 71 (1977), 223. MR 0508035 (58:22639a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 46E35

Retrieve articles in all journals with MSC: 46J15, 46E35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1017007-X
PII: S 0002-9939(1990)1017007-X
Keywords: Corona theorem, Besov space
Article copyright: © Copyright 1990 American Mathematical Society