Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic behavior of stable manifolds


Author: Michal Fečkan
Journal: Proc. Amer. Math. Soc. 111 (1991), 585-593
MSC: Primary 34C29; Secondary 58F15, 58F25
DOI: https://doi.org/10.1090/S0002-9939-1991-1037207-3
MathSciNet review: 1037207
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The relation between local stable manifolds of an ordinary differential equation and its discretization is studied. We show that a local stable manifold of a hyperbolic fixed point of an ordinary differential equation is the limit of local stable manifolds of the same fixed point of its discretizations as the discretization parameter $ h > 0$ approaches 0.


References [Enhancements On Off] (What's this?)

  • [1] M.W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra, Academic Press, New York and London, 1974. MR 0486784 (58:6484)
  • [2] S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1983. MR 660633 (84e:58019)
  • [3] S. Schecter, Stable manifolds in the method of averaging, Trans. Amer. Math. Soc. 308 (1988), 159-176. MR 946437 (89i:34061)
  • [4] J. K. Hale, Ordinary differential equations, Krieger, Huntington, New York, 1980. MR 587488 (82e:34001)
  • [5] M. Medveď, Dynamical systems, Veda, Bratislava, 1988. (Slovak) MR 982929 (90k:58057)
  • [6] J. Murdock and C. Robinson, Qualitative dynamics from asymptotic expansions: local theory, J. Differential Equations 36 (1980), 425-441. MR 576160 (81h:58053)
  • [7] K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported 1, Wiley, New York and Teubner, Stuttgart, 1988, pp. 265-306. MR 945967 (89j:58060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C29, 58F15, 58F25

Retrieve articles in all journals with MSC: 34C29, 58F15, 58F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1037207-3
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society