Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representations of $ {\rm SO}(k,{\bf C})$ on harmonic polynomials on a null cone


Authors: Olivier Debarre and Tuong Ton-That
Journal: Proc. Amer. Math. Soc. 112 (1991), 31-44
MSC: Primary 22E45
DOI: https://doi.org/10.1090/S0002-9939-1991-1033957-3
MathSciNet review: 1033957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The linear action of the group $ SO(k,{\mathbf{C}})$ on the vector space $ {{\mathbf{C}}^{n \times k}}$ extends to an action on the algebra of polynomials on $ {{\mathbf{C}}^{n \times k}}$. The polynomials that are fixed under this action are called $ SO(k,{\mathbf{C}})$-invariant. The $ SO(k,{\mathbf{C}})$-harmonic polynomials are common solutions of the $ SO(k,{\mathbf{C}})$-invariant differential operators. The ideal of all $ SO(k,{\mathbf{C}})$-invariants without constant terms, the null cone of this ideal, and the orbits of $ SO(k,{\mathbf{C}})$ on this null cone are studied in great detail. All irreducible holomorphic representations of $ SO(k,{\mathbf{C}})$ are concretely realized on the space of $ SO(k,{\mathbf{C}})$-harmonic polynomials.


References [Enhancements On Off] (What's this?)

  • [A] E. Artin, Geometric algebra, Wiley-Interscience, New York, 1988. MR 1009557 (90h:51003)
  • [D-P] C. DeConcini and C. Procesi, A characteristic free approach to invariant theory, Adv. in Math. 21 (1976), 330-354. MR 0422314 (54:10305)
  • [G] S. Gelbart, A theory of Stiefel harmonics, Trans. Amer. Math. Soc. 192 (1974), 29-65. MR 0425519 (54:13474)
  • [G-P-R] S. Gelbart, I. Piatetski-Shapiro, and S. Rallis, Explicit constructions of automorphic $ L$-functions, Lecture Notes in Math., vol. 1254, Springer-Verlag, Berlin-Heidelberg, 1987. MR 892097 (89k:11038)
  • [G-K] K. Gross and R. Kunze, Finite dimensional induction and new results on invariants of classical groups I, Amer. J. Math. 106 (1984), 893-974. MR 749261 (86h:22027)
  • [G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978. MR 507725 (80b:14001)
  • [H1] S. Helgason, Invariants and fundamental functions, Acta Math. 109 (1963), 241-258. MR 0166304 (29:3581)
  • [H2] -, Groups and geometric analysis, Academic Press, Orlando, 1984. MR 754767 (86c:22017)
  • [H] W. H. Hesselink, Desingularizations of varieties of nullforms, Invent. Math. 55 (1979), 141-163. MR 553706 (81b:14025)
  • [K-V] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), 1-47. MR 0463359 (57:3311)
  • [K-O] A. Kowata and K. Okamoto, Harmonic functions and the Borel-Weil theorem, Hiroshima Math. 4 (1974), 89-97. MR 0457796 (56:16000)
  • [K] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 0158024 (28:1252)
  • [L] D. Levine, Systems of singular integral operators on spheres, Trans. Amer. Math. Soc. 144 (1969), 493-522. MR 0412743 (54:864)
  • [M1] H. Maass, Zur Theorie der Harmonischen Formen, Math. Ann. 137 (1959), 142-149. MR 0121512 (22:12250)
  • [M2] -, Spherical functions and quadratic forms, J. Indian Math. Soc. 20 (1956), 117-162. MR 0086837 (19:252a)
  • [M] H. Matsumura, Commutative algebra, W. A. Benjamin Co., New York, 1970. MR 0266911 (42:1813)
  • [S] R. Strichartz, The explicit fourier decomposition of $ {L^2}(SO(n)/SO(n - m))$, Canad. J. Math. 27 (1975), 294-310. MR 0380277 (52:1177)
  • [T1] T. Ton-That, Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc. 216 (1976), 1-46. MR 0399366 (53:3210)
  • [T2] -, Symplectic Stiefel harmonic and holomorphic representations of symplectic groups, Trans. Amer. Math. Soc. 232 (1977), 265-276. MR 0476926 (57:16477)
  • [V] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Englewood Cliffs, NJ, 1974. MR 0376938 (51:13113)
  • [W] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1946. MR 1488158 (98k:01049)
  • [Z] D. P. Želobenko, The theory of linear representations of complex and real Lie groups, Transl. Math. Monographs, vol. 40, Amer. Math. Soc., Providence, RI, 1973.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E45

Retrieve articles in all journals with MSC: 22E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1033957-3
Keywords: $ SO(k,{\mathbf{C}})$-invariant polynomials, $ SO(k,{\mathbf{C}})$-harmonic polynomials, $ SO(k,{\mathbf{C}})$-invariant ideal, null cone, $ SO(k,{\mathbf{C}})$-orbits, holomorphic representations of $ SO(k,{\mathbf{C}})$
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society