Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A class of absolute retracts in spaces of integrable functions

Authors: Alberto Bressan, Arrigo Cellina and Andrzej Fryszkowski
Journal: Proc. Amer. Math. Soc. 112 (1991), 413-418
MSC: Primary 47H15; Secondary 34A60, 47H10, 49J24, 54C15
MathSciNet review: 1045587
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a class of subsets of $ {L^1}$, that are shown to be absolute retracts, that contains at once decomposable sets and sets of solutions to Lipschitzean differential inclusions. In this way we generalize and unify a number of different previous results.

References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin and A. Cellina, Differential inclusions, Springer-Verlag, Berlin, Heidelberg, and New York, 1984. MR 755330 (85j:49010)
  • [2] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. MR 947921 (89j:54021)
  • [3] A. Cellina, On the set of solutions to Lipschitzian differential inclusions, Differential and Integral Equations 1 (1988), 495-500. MR 945823 (89d:34023)
  • [4] A. Cellina and A. Ornelas, Representation of the attainable set for Lipschitzean differential inclusions, Rocky Mountain J. Math. (to appear). MR 1159946 (93b:34028)
  • [5] R. M. Colombo, A. Fryszkowski, T. Rzezukowski, and V. Staicu, Continuous selections of solutions sets of Lipschitzean differential inclusions, Funk. Ekv. (to appear).
  • [6] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. MR 730018 (85j:54022)
  • [7] F. Hiai and H. Umegaki, Integrals, conditions expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1971), 149-182. MR 0507504 (58:22463)
  • [8] A. Ornelas, A continuous version of the Filippov-Gronwall inequality for differential inclusions, Rend. Sem. Mat. Univ. Padova (to appear).
  • [9] B. Ricceri, Une proprieté topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, preprint.
  • [10] K. Yosida, Functional analysis, 6th ed., Springer-Verlag, Berlin, 1980. MR 617913 (82i:46002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H15, 34A60, 47H10, 49J24, 54C15

Retrieve articles in all journals with MSC: 47H15, 34A60, 47H10, 49J24, 54C15

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society