Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bielliptic curves and symmetric products

Authors: Joe Harris and Joe Silverman
Journal: Proc. Amer. Math. Soc. 112 (1991), 347-356
MSC: Primary 11G30; Secondary 14H25
MathSciNet review: 1055774
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the twofold symmetric product of a nonhyperelliptic, nonbielliptic curve does not contain any elliptic curves. Applying a theorem of Faltings, we conclude that such a curve defined over a number field $ K$ has only finitely many points over all quadratic extensions of $ K$. We illustrate our theory with the modular curves $ {X_0}(N),{X_1}(N),X(N)$.

References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, vol. I, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
  • [2] G. Faltings, Diophantine approximation on Abelian varieties, preprint. MR 1109353 (93d:11066)
  • [3] G. Frey, A remark about isogenies of elliptic curves over quadratic fields, Compositio Math. 58 (1986), 133-134. MR 834050 (87f:11037)
  • [4] M. Hindry, Points quadratiques sur les courbes, C. R. Acad. Sci. Paris Sér. I 305 (1987), 219-221. MR 907946 (88i:11037)
  • [5] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. MR 0364259 (51:514)
  • [6] J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1986. MR 817210 (87g:11070)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11G30, 14H25

Retrieve articles in all journals with MSC: 11G30, 14H25

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society