Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On weak reverse integral inequalities for mean oscillations


Author: Michelangelo Franciosi
Journal: Proc. Amer. Math. Soc. 113 (1991), 105-112
MSC: Primary 42B25; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1991-1068122-7
MathSciNet review: 1068122
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ f$ verifies a reverse Hölder inequality with exponent $ p,1 < p < + \infty $, then $ {(Mf + {f^\char93 })^p}$ is a $ {A_1}$-weight of Muckenhoupt, where $ Mf$ is the Hardy-Littlewood maximal function and $ {f^\char93 }$ the Fefferman-Stein maximal function.


References [Enhancements On Off] (What's this?)

  • [1] C. Bennett and R. Sharpley, Weak-type inequalities for $ {H^p}$ and BMO, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R.I., 1979, pp. 201-229. MR 545259 (80j:46044)
  • [2] -, Interpolation of operators, Academic Press, New York, 1988. MR 928802 (89e:46001)
  • [3] B. Boyarski, On Gurov-Reshetnyak classes (to appear).
  • [4] B. Boyarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $ {R^n}$, Ann. Acad. Sci. Fenn. Ser. A 1 Math. 8 (1983), 257-324. MR 731786 (85h:30023)
  • [5] A. Canale, A higher integrability theorem from reverse Hölder weighted inequalities with different supports, Boll. Un. Mat. Ital. (to appear). MR 1120373 (93e:30051)
  • [6] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [7] E. Fabes, C. E. Kenig, and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. MR 643158 (84i:35070)
  • [8] M. Franciosi, Maximum principle for second order elliptic equations and applications, J. Math. Anal. Appl. (to appear). MR 991028 (90d:35037)
  • [9] -, Weighted rearrangements and higher integrability results, Studia Math. 92 (1989), 31-39. MR 986944 (90e:42036)
  • [10] M. Franciosi and G. Moscariello, Higher integrability results, Manuscripta Math. 52 (1985), 151-171. MR 790797 (86k:42032)
  • [11] -, A note on the maximum principle for 2nd order non variational linear elliptic equations, Ricerche Mat. XXXV (1986), 279-290.
  • [12] F. W. Gehring, The $ {L^p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • [13] C. Herz, The Hardy-Littlewood maximal theorems, Sympos. on Harm. Analysis, Univ. of Warwick, 1968.
  • [14] T. Iwaniec, On $ {L^p}$ integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A 1 Math. 7 (1982), 301-332. MR 686647 (84h:30026)
  • [15] B. Muckenhoupt, Weighted inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [16] C. Sbordone, Higher integrability from reverse integral inequalities, methods of functional analysis and theory of elliptic equations, Napoli, 1982, pp. 347-357, Liguori, Napoli, 1983. MR 819021 (87a:26025)
  • [17] -, On some integral inequalities and their applications to the calculus of variations, Boll. Un. Mat. Ital. C (6) 1 (1986), 73-94. MR 897186 (88d:26036)
  • [18] -, Some reverse integral inequalities, Atti Accad. Pontaniana, Napoli, 1984.
  • [19] I. Wik, Note on a theorem by Reshetnyak-Gurov, Studia Math. 87 (1987), 287-290. MR 917054 (89d:26014)
  • [20] -, On Muckenhoupt's classes of weight functions, Studia Math. Instituto Di Matematica, Barorllssi, 84100 Salermo (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 46E30

Retrieve articles in all journals with MSC: 42B25, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1068122-7
Keywords: Reverse inequalities, Mean oscillations, maximal functions, $ {A_p}$-weights
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society