Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Fourier-Bessel series representation of the pseudo-differential operator $ (-x\sp {-1}D)\sp \nu$


Authors: O. P. Singh and J. N. Pandey
Journal: Proc. Amer. Math. Soc. 115 (1992), 969-976
MSC: Primary 46F12; Secondary 26A33, 47G30
DOI: https://doi.org/10.1090/S0002-9939-1992-1107924-6
MathSciNet review: 1107924
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a certain Fréchet space $ F$ consisting of complex-valued $ {C^\infty }$ functions defined on $ I = (0,\infty )$ and characterized by their asymptotic behaviour near the boundaries, we show that:

(I) The pseudo-differential operator $ {( - {x^{ - 1}}D)^\nu },\nu \in \mathbb{R},D = d/dx$, is an automorphism (in the topological sense) on $ F$;

(II) $ {( - {x^{ - 1}}D)^\nu }$ is almost an inverse of the Hankel transform $ {h_\nu }$ in the sense that

$\displaystyle {h_\nu } \circ {({x^{ - 1}}D)^\nu }(\varphi ) = {h_0}(\varphi ),\quad \forall \varphi \in F,\quad \forall \nu \in \mathbb{R};$

(III) $ {( - {x^{ - 1}}D)^\nu }$ has a Fourier-Bessel series representation on a subspace $ {F_b} \subset F$ and also on its dual $ {F'_b}$.


References [Enhancements On Off] (What's this?)

  • [1] L. S. Dube and J. N. Pandey, On the Hankel transformation of distributions, Tohoku Math. J. 27 (1975), 337-354. MR 0450964 (56:9254)
  • [2] J. L. Griffith, Hankel Transforms of functions zero out-side a finite interval, J. Proc. Roy. Soc., New South Wales 89 (1955), 109-115. MR 0077616 (17:1066d)
  • [3] W. Y. Lee, On Schwartz's Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal. 6 (1975), 427-432. MR 0361766 (50:14211)
  • [4] A. L. Schwartz, An inversion theorem for Hankel transforms, Proc. Amer. Math. Soc. 22 (1969), 713-717. MR 0243294 (39:4616)
  • [5] O. P. Singh, On distributional finite Hankel transform, Appl. Anal. 21 (1986), 245-260. MR 840316 (87g:46072)
  • [6] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York and London, 1967. MR 0225131 (37:726)
  • [7] A. H. Zemanian, Generalized integral transformations, Interscience, New York, 1968. MR 0423007 (54:10991)
  • [8] -, A distributional Hankel transform, J. SIAM Appl. Math. 14 (1966), 561-576. MR 0201930 (34:1807)
  • [9] -, The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math. 14 (1966), 678-690. MR 0211211 (35:2093)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F12, 26A33, 47G30

Retrieve articles in all journals with MSC: 46F12, 26A33, 47G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1107924-6
Keywords: Pseudo-differential operator, Hankel transform of distributions, open mapping theorem, almost inverse
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society