Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Examples of Buchsbaum quasi-Gorenstein rings


Authors: Manfred Herrmann and Ngô Viet Trung
Journal: Proc. Amer. Math. Soc. 117 (1993), 619-625
MSC: Primary 13H10; Secondary 13H15
DOI: https://doi.org/10.1090/S0002-9939-1993-1112491-8
MathSciNet review: 1112491
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper shows the existence of Buchsbaum quasi-Gorenstein rings of any admissible depth.


References [Enhancements On Off] (What's this?)

  • [1] H. Bresinsky, P. Schenzel, and W. Vogel, Liaison, arithmetical Buchsbaum curves, and monomial curves in $ {P^3}$, J. Algebra 86 (1984), 283-301. MR 732252 (85c:14031)
  • [2] S. Goto and K. Watanabe, On graded rings. II: $ {\mathbb{Z}^n}$-graded rings, Tokyo J. Math. 1 (1978), 237-261. MR 519194 (81m:13022)
  • [3] J. Herzog and E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension $ 1$, Ber. Heidelberger Akad. Wiss., vol. II, 1971.
  • [4] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337. MR 0304376 (46:3511)
  • [5] C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), 1265-1303. MR 815763 (87f:13010)
  • [6] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271-302. MR 0364271 (51:526)
  • [7] U. Schäfer and P. Schenzel, Dualizing complexes of affine semigroup rings, Trans. Amer. Math. Soc. 322 (1990), 561-582. MR 1076179 (92a:13012)
  • [8] P. Schenzel, On Buchsbaum rings and their canonical modules, Seminar Eisenbud-Singh-Vogel, Vol. 1, Teubner-Texte Math., vol. 29, Teubner, Leipzig, 1980, pp. 65-76. MR 610064 (82i:13023)
  • [9] -, A note on almost complete intersections, Seminar Eisenbud-Singh-Vogel, Vol. 2, Teubner-Texte Math., vol. 48, Teubner, Leipzig, 1982, pp. 49-54. MR 686457 (84g:13035)
  • [10] R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57-83. MR 0485835 (58:5637)
  • [11] N. V. Trung and L. T. Hoa, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Amer. Math. Soc. 298 (1986), 145-167. MR 857437 (87j:13032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10, 13H15

Retrieve articles in all journals with MSC: 13H10, 13H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1112491-8
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society