Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Notes on $ \pi$-quasi-normal subgroups in finite groups


Author: Yong Cai Ren
Journal: Proc. Amer. Math. Soc. 117 (1993), 631-636
MSC: Primary 20D40
DOI: https://doi.org/10.1090/S0002-9939-1993-1113651-2
MathSciNet review: 1113651
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a finite group and let $ \pi $ be a set of primes. A subgroup $ H$ of $ G$ is called $ \pi $-quasi-normal in $ G$ if $ H$ permutes with every Sylow $ p$-subgroup of $ G$ for every $ p$ in $ \pi $. In this paper, we investigate how $ \pi $-quasi-normality conditions on some subgroups of $ G$ affect the structure of $ G$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D40

Retrieve articles in all journals with MSC: 20D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1113651-2
Keywords: $ \pi $-quasi-normal, $ \pi $-solvable, formations, supersolvable, $ p$-nilpotent
Article copyright: © Copyright 1993 American Mathematical Society