Weakly convergent sequence coefficient of product space

Author:
Guang Lu Zhang

Journal:
Proc. Amer. Math. Soc. **117** (1993), 637-643

MSC:
Primary 46B45

MathSciNet review:
1152993

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: W. L. Bynum introduced the weakly convergent sequence coefficient of the Banach space as . We consider the weakly convergent sequence coefficient of the -product space of the finite non-Schur space and show that .

**[1]**W. L. Bynum,*Normal structure coefficients for Banach spaces*, Pacific J. Math.**86**(1980), no. 2, 427–436. MR**590555****[2]**Teck-Cheong Lim,*On the normal structure coefficient and the bounded sequence coefficient*, Proc. Amer. Math. Soc.**88**(1983), no. 2, 262–264. MR**695255**, 10.1090/S0002-9939-1983-0695255-2**[3]**Vasile I. Istrăţescu,*On a measure of noncompactness*, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.)**16(64)**(1972), no. 2, 195–197 (1973). MR**0341429****[4]**Clifford A. Kottman,*Subsets of the unit ball that are separated by more than one*, Studia Math.**53**(1975), no. 1, 15–27. MR**0377477****[5]**E. Maluta,*Uniformly normal structure and related coefficients*, Pacific J. Math.**111**(1984), no. 2, 357–369. MR**734861****[6]**Hong Kun Xu,*The Maluta problem for sequential constants in Banach spaces*, Kexue Tongbao (Chinese)**34**(1989), no. 10, 725–726 (Chinese). MR**1030690****[7]**Thomas Landes,*Permanence properties of normal structure*, Pacific J. Math.**110**(1984), no. 1, 125–143. MR**722744**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B45

Retrieve articles in all journals with MSC: 46B45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1152993-1

Keywords:
Asymptotic equidistant sequence,
weakly convergent sequence coefficient

Article copyright:
© Copyright 1993
American Mathematical Society