Weakly convergent sequence coefficient of product space
Author:
Guang Lu Zhang
Journal:
Proc. Amer. Math. Soc. 117 (1993), 637-643
MSC:
Primary 46B45
DOI:
https://doi.org/10.1090/S0002-9939-1993-1152993-1
MathSciNet review:
1152993
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: W. L. Bynum introduced the weakly convergent sequence coefficient of the Banach space
as
. We consider the weakly convergent sequence coefficient of the
-product space
of the finite non-Schur space
and show that
.
- [1] W. L. Bynum, Normal structure coefficient for Banach spaces, Pacific J. Math. 86 (1980), 427-436. MR 590555 (81m:46030)
- [2] T. C. Lim, On the normal structure coefficient and the bounded sequence coefficient, Proc. Amer. Math. Soc. 88 (1983), 262-264. MR 695255 (85g:46021)
- [3] V. I. Istratescu, On a measure of noncompactness, Bull. Math. Soc. Sci. Math. R. S. Roumanie 16 (1972), 195-197. MR 0341429 (49:6180)
- [4] C. A. Kottmann, Subsets of the unit ball that are separated by more than one, Studia Math. 53 (1975), 15-27. MR 0377477 (51:13649)
- [5] E. Maluta, Uniformly normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-369. MR 734861 (85j:46023)
- [6] Hong-Kun Xu, On the Maluta's problem of sequence constants in Banach spaces, Bull. Sci. China 34 (1989), 725-726. (Chinese) MR 1030690
- [7] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125-143. MR 722744 (86e:46014)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B45
Retrieve articles in all journals with MSC: 46B45
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1152993-1
Keywords:
Asymptotic equidistant sequence,
weakly convergent sequence coefficient
Article copyright:
© Copyright 1993
American Mathematical Society