Weakly convergent sequence coefficient of product space

Author:
Guang Lu Zhang

Journal:
Proc. Amer. Math. Soc. **117** (1993), 637-643

MSC:
Primary 46B45

DOI:
https://doi.org/10.1090/S0002-9939-1993-1152993-1

MathSciNet review:
1152993

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: W. L. Bynum introduced the weakly convergent sequence coefficient of the Banach space as . We consider the weakly convergent sequence coefficient of the -product space of the finite non-Schur space and show that .

**[1]**W. L. Bynum,*Normal structure coefficient for Banach spaces*, Pacific J. Math.**86**(1980), 427-436. MR**590555 (81m:46030)****[2]**T. C. Lim,*On the normal structure coefficient and the bounded sequence coefficient*, Proc. Amer. Math. Soc.**88**(1983), 262-264. MR**695255 (85g:46021)****[3]**V. I. Istratescu,*On a measure of noncompactness*, Bull. Math. Soc. Sci. Math. R. S. Roumanie**16**(1972), 195-197. MR**0341429 (49:6180)****[4]**C. A. Kottmann,*Subsets of the unit ball that are separated by more than one*, Studia Math.**53**(1975), 15-27. MR**0377477 (51:13649)****[5]**E. Maluta,*Uniformly normal structure and related coefficients*, Pacific J. Math.**111**(1984), 357-369. MR**734861 (85j:46023)****[6]**Hong-Kun Xu,*On the Maluta's problem of sequence constants in Banach spaces*, Bull. Sci. China**34**(1989), 725-726. (Chinese) MR**1030690****[7]**T. Landes,*Permanence properties of normal structure*, Pacific J. Math.**110**(1984), 125-143. MR**722744 (86e:46014)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B45

Retrieve articles in all journals with MSC: 46B45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1152993-1

Keywords:
Asymptotic equidistant sequence,
weakly convergent sequence coefficient

Article copyright:
© Copyright 1993
American Mathematical Society