Liftings and the property of Baire in locally compact groups

Author:
Maxim R. Burke

Journal:
Proc. Amer. Math. Soc. **117** (1993), 1075-1082

MSC:
Primary 28A51; Secondary 28C10, 46G15, 54H05

MathSciNet review:
1128726

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each locally compact group with Haar measure , we obtain the following results. The first is a version for group quotients of a classical result of Kuratowski and Ulam on first category subsets of the plane. The second is a strengthening of a theorem of Kupka and Prikry; we obtain it by a much simpler technique, building on work of Talagrand and Losert.

Theorem 1. *If* *is* -*compact*, *is a closed normal subgroup, and* *is the usual projection, then for each first category set* , *there is a first category set* *such that for each* *is a first category set relative to* .

Theorem 2. *If* *is not discrete, then there is a Borel set* *such that for any translation-invariant lifting* *for* *is not universally measurable and does not have the Baire property*.

**[BJ]**Maxim R. Burke and Winfried Just,*Liftings for Haar measure on {0,1}^{𝜅}*, Israel J. Math.**73**(1991), no. 1, 33–44. MR**1119925**, 10.1007/BF02773422**[BS]**Maxim R. Burke and Saharon Shelah,*Linear liftings for noncomplete probability spaces*, Israel J. Math.**79**(1992), no. 2-3, 289–296. MR**1248919**, 10.1007/BF02808221**[C]**J. P. R. Christensen,*Topology and Borel structure*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory; North-Holland Mathematics Studies, Vol. 10. (Notas de Matemática, No. 51). MR**0348724****[H]**Paul R. Halmos,*Naive set theory*, Springer-Verlag, New York-Heidelberg, 1974. Reprint of the 1960 edition; Undergraduate Texts in Mathematics. MR**0453532****[HR]**E. Hewitt and R. A. Ross,*Abstract harmonic analysis*. I, 2nd ed., Springer-Verlag, Berlin, 1979.**[I1]**A. Ionescu Tulcea and C. Ionescu Tulcea,*On the existence of a lifting commuting with the left translations of an arbitrary locally compact group*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 63–97. MR**0212122****[12]**-,*Topics in the theory of liftings*, Springer-Verlag, New York, 1969.**[J]**Russell A. Johnson,*Strong liftings which are not Borel liftings*, Proc. Amer. Math. Soc.**80**(1980), no. 2, 234–236. MR**577750**, 10.1090/S0002-9939-1980-0577750-7**[Ju]**Winfried Just,*A modification of Shelah’s oracle-c.c. with applications*, Trans. Amer. Math. Soc.**329**(1992), no. 1, 325–356. MR**1022167**, 10.1090/S0002-9947-1992-1022167-7**[K]**K. Kuratowski,*Topology. Vol. I*, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR**0217751****[KP]**Joseph Kupka and Karel Prikry,*Translation-invariant Borel liftings hardly ever exist*, Indiana Univ. Math. J.**32**(1983), no. 5, 717–731. MR**711863**, 10.1512/iumj.1983.32.32047**[L]**Viktor Losert,*Some remarks on invariant liftings*, Measure theory, Oberwolfach 1983 (Oberwolfach, 1983) Lecture Notes in Math., vol. 1089, Springer, Berlin, 1984, pp. 95–110. MR**786689**, 10.1007/BFb0072606**[M]**Dorothy Maharam,*On a theorem of von Neumann*, Proc. Amer. Math. Soc.**9**(1958), 987–994. MR**0105479**, 10.1090/S0002-9939-1958-0105479-6**[O]**J. C. Oxtoby,*Measure and category*, Academic Press, New York, 1971.**[S]**Saharon Shelah,*Lifting problem of the measure algebra*, Israel J. Math.**45**(1983), no. 1, 90–96. MR**710248**, 10.1007/BF02760673**[So]**Robert M. Solovay,*A model of set-theory in which every set of reals is Lebesgue measurable*, Ann. of Math. (2)**92**(1970), 1–56. MR**0265151****[T]**Michel Talagrand,*La pathologie des relèvements invariants*, Proc. Amer. Math. Soc.**84**(1982), no. 3, 379–382 (French). MR**640236**, 10.1090/S0002-9939-1982-0640236-7**[W]**H. E. White Jr.,*Topological spaces that are 𝛼-favorable for a player with perfect information*, Proc. Amer. Math. Soc.**50**(1975), 477–482. MR**0367941**, 10.1090/S0002-9939-1975-0367941-0

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A51,
28C10,
46G15,
54H05

Retrieve articles in all journals with MSC: 28A51, 28C10, 46G15, 54H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1128726-1

Article copyright:
© Copyright 1993
American Mathematical Society