Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On approximately convex functions


Authors: C. T. Ng and K. Nikodem
Journal: Proc. Amer. Math. Soc. 118 (1993), 103-108
MSC: Primary 26A51; Secondary 26B25
DOI: https://doi.org/10.1090/S0002-9939-1993-1159176-X
MathSciNet review: 1159176
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Bernstein-Doetsch theorem on midconvex functions is extended to approximately midconvex functions and to approximately Wright convex functions.


References [Enhancements On Off] (What's this?)

  • [1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460. MR 0024479 (9:501e)
  • [2] D. H. Hyers and M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828. MR 0049962 (14:254b)
  • [3] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), 267-279. MR 931983 (89e:26029)
  • [4] -, Convex functions in linear spaces, Prace Nauk. Uniw. Ślask. Katowic. 1087 (1989). MR 1047662 (91g:46010)
  • [5] Z. Kominek and M. Kuczma, Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. 52 (1989), 595-602. MR 1007635 (90i:46017)
  • [6] M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, PWN and Uniwersytet Ślaski, Warszawa-Kraków-Katowice, 1985. MR 788497 (86i:39008)
  • [7] -, An example of semilinear topologies, Stochastica 12 (1988), 198-205. MR 1024758 (90m:46009)
  • [8] C. T. Ng, On midconvex functions with midconcave bounds, Proc. Amer. Math. Soc. 102 (1988), 538-540. MR 928975 (89d:26013)
  • [9] -, Functions generating Schur-convex sums, General Inequalities 5 (Proc. 5th Internat. Conf. on General Inequalities, Oberwolfach 1986), International Series of Numerical Mathematics, Vol. 80, Birkhäuser Verlag, Basel and Boston, 1987, pp. 433-438. MR 1018166 (91b:26018)
  • [10] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York and London, 1973. MR 0442824 (56:1201)
  • [11] F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964. MR 0170264 (30:503)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A51, 26B25

Retrieve articles in all journals with MSC: 26A51, 26B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1159176-X
Keywords: Approximately convex functions, Bernstein-Doetsch theorem
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society