Polynomial approximation for a class of physical random variables

Authors:
A. De Santis, A. Gandolfi, A. Germani and P. Tardelli

Journal:
Proc. Amer. Math. Soc. **120** (1994), 261-266

MSC:
Primary 60B12; Secondary 28C20, 46G12, 47N30

DOI:
https://doi.org/10.1090/S0002-9939-1994-1164142-5

MathSciNet review:
1164142

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In white noise theory on Hilbert spaces, it is known that maps which are uniformly continuous around the origin in the S-topology constitute an important class of "physical" random variables. We prove that random variables having such a continuity property can be approximated in the gaussian measure by polynomial random variables. The proof relies on representing functions which are uniformly S-continuous around the origin as the composition of a continuous map with a Hilbert-Schmidt operator.

**[1]**A. V. Balakrishnan,*Parameter estimation in stochastic differential systems*:*theory and application*, Developments in Statistics, vol. 1, Academic Press, New York, 1978. MR**505445 (80a:60059)****[2]**G. Kallianpur and R. Karandikar,*White noise calculus and non-linear filtering theory*, Ann. Probab.**13**(1985), 1033-1107. MR**806211 (87b:60067)****[3]**A. V. Balakrishnan,*Applied functional analysis*, Springer, New York, 1981. MR**637334 (83h:00004)****[4]**A. Germani and P. Sen,*White noise solution for a class of distributed feedback systems with multiplicative noise*, Ricerche Automat.**10**(1979), 38-65. MR**614562 (82j:60119)****[5]**H. H. Kuo,*Gaussian measures in Banach Spaces*, Lecture Notes in Math., vol. 463, Springer, New York, 1975. MR**0461643 (57:1628)****[6]**L. Gross,*Integration and non-linear transformations in Hilbert space*, Trans. Amer. Math. Soc.**94**(1960), 404-440. MR**0112025 (22:2883)****[7]**-,*Harmonic analysis on Hilbert spaces*, Mem. Amer. Math. Soc., no. 46, Amer. Math. Soc., Providence, RI, 1963, pp. 1-62. MR**0161095 (28:4304)****[8]**A. Gandolfi and A. Germani,*On the definition of a topology in Hilbert spaces with applications to the White Noise Theory*, J. Franklin Inst.**316**(1983), 435-444. MR**727391 (85e:93045)****[9]**K. R. Parthasarathy,*Probability measures on metric spaces*, Academic Press, New York, 1967. MR**0226684 (37:2271)****[10]**P. M. Prenter,*A Weierstrass theorem for normed linear spaces*, Bull. Amer. Math. Soc.**75**(1969), 860-862. MR**0244685 (39:5999)****[11]**-,*On polynomial operators and equations*, Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971. MR**0290208 (44:7392)****[12]**A. DeSantis, A. Gandolfi, A. Germani, and P. Tardelli,*A representation theorem for Radon-Nikodym derivatives in the white-noise theory*, Proc. Internat. Conf. on Mathematical Theory of Control (Bombay, India, December 10-15, 1990), Marcel Dekker, New York, 1993, pp. 109-123.**[13]**R. R. Mazumdar and A. Bagchi,*A representation result for nonlinear filters*, Proc. COMCON 3 (Victoria, Canada, October 15-18, 1991), Vol. 2, UNLV Publications, Las Vegas, 1992, pp. 794-805.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60B12,
28C20,
46G12,
47N30

Retrieve articles in all journals with MSC: 60B12, 28C20, 46G12, 47N30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1164142-5

Article copyright:
© Copyright 1994
American Mathematical Society