Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Integrability of superharmonic functions and subharmonic functions


Author: Hiroaki Aikawa
Journal: Proc. Amer. Math. Soc. 120 (1994), 109-117
MSC: Primary 31B05
MathSciNet review: 1169019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.


References [Enhancements On Off] (What's this?)

  • [1] A. Ancona, On strong barriers and an inequality of Hardy for domains in $ {\mathbb{R}^n}$, J. London Math. Soc. (2) 34 (1986), 274-290. MR 856511 (87k:31004)
  • [2] D. H. Armitage, On the global integrability of superharmonic functions in balls, J. London Math. Soc. (2) 4 (1971), 365-373. MR 0291484 (45:575)
  • [3] -, Further result on the global integrability of superharmonic functions, J. London Math. Soc. (2) 6 (1972), 109-121. MR 0313524 (47:2078)
  • [4] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), 1-35. MR 967787 (89m:30001)
  • [5] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147. MR 676988 (84d:31005b)
  • [6] P. Jones and T. Wolff, Hausdorff dimension of harmonic measures in the plane, Acta Math. 161 (1988), 131-144. MR 962097 (90j:31001)
  • [7] F.-Y. Maeda and N. Suzuki, The integrability of superharmonic functions on Lipschitz domains, Bull. London Math. Soc. 21 (1989), 270-278. MR 986371 (90b:31004)
  • [8] M. Masumoto, A distorsion theorem for conformal mappings with an application to subharmonic functions, Hiroshima Math. J. 20 (1990), 341-350. MR 1063368 (91h:30037)
  • [9] -, Integrability of superharmonic functions on plane domains, J. London Math. Soc. (2) 45 (1992), 62-78. MR 1157552 (93f:31002)
  • [10] -, Integrability of superharmonic functions on Hölder domains of the plane, proc. Amer. Math. Soc. 117 (1993), 1083-1088. MR 1152284 (93e:31001)
  • [11] V. G. Maz'ya, Sobolev spaces, Springer, New York, 1985. MR 817985 (87g:46056)
  • [12] W. Smith and D. A. Stegenga, Sobolev imbedding and integrability of harmonic functions on Hölder domains, Potential Theory (Proc. Internat. Conf. Potential Theory, Nagoya 1990) (M. Kishi, ed.), Walter de Gruyter, Berlin, 1992, pp. 303-313. MR 1167248 (93d:46056)
  • [13] D. A. Stegenga and D. C. Ullrich, Superharmonic functions in Holder domains, preprint. MR 1371353 (97j:31003)
  • [14] N. Suzuki, Nonintegrability of harmonic functions in a domain, Japan. J. Math. 16 (1990), 269-278. MR 1091161 (91m:31003)
  • [15] -, Nonintegrability of superharmonic functions, Proc. Amer. Math. Soc. 113 (1991), 113-115. MR 1054163 (91k:31005)
  • [16] -, Note on the integrability of superharmonic functions, preprint.
  • [17] K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17-37. MR 0239264 (39:621)
  • [18] J.-M. Wu, Boundary density and the Green function, Michigan Math. J. 38 (1991), 175-189. MR 1098855 (92g:31009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B05

Retrieve articles in all journals with MSC: 31B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169019-7
Keywords: Superharmonic function, subharmonic function, Green function, coarea formula
Article copyright: © Copyright 1994 American Mathematical Society