Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strong moment problems for rapidly decreasing smooth functions


Authors: Ana Lía Durán and Ricardo Estrada
Journal: Proc. Amer. Math. Soc. 120 (1994), 529-534
MSC: Primary 44A60; Secondary 33C45
DOI: https://doi.org/10.1090/S0002-9939-1994-1164143-7
MathSciNet review: 1164143
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the existence of rapidly decreasing smooth solutions of various moment problems follows from the theorem of Ritt on the existence of analytic functions with a prescribed asymptotic power series at the vertex of a given sector.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
  • [2] E. J. Beltrami and M. R. Wohlers, Distributions and the boundary values of analytic functions, Academic Press, New York, 1966. MR 0208362 (34:8172)
  • [3] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, 1984. MR 747302 (86b:43001)
  • [4] R. P. Boas, The Stieljes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45 (1939), 399-404. MR 1563993
  • [5] -, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [6] A. J. Durán, The Stieljes moment problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731-741.
  • [7] R. Estrada, The asymptotic expansion of certain series considered by Ramanujan, Appl. Anal. 43 (1992), 191-228. MR 1284319 (95i:46053)
  • [8] R. Estrada, J. Gracia-Bondía, and J. Várilly, On asymptotic expansions of twisted products, J. Math. Phys. 30 (1989), 2789-2796. MR 1025220 (91c:46057)
  • [9] R. Estrada and R. P. Kanwal, Moment sequences for a class of distributions, Complex Variables Theory Appl. 9 (1987), 31-39. MR 916914 (89d:30041)
  • [10] -, A distributional theory for asymptotic expansions, Proc. Roy. Soc. London Ser. A 428 (1990), 399-430. MR 1050538 (91c:41085)
  • [11] W. B. Jones, W. J. Thron, and O. Njåstad, Orthogonal Laurent polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl. 98 (1984), 528-554. MR 730525 (85h:44015)
  • [12] A. M. Krall, R. P. Kanwal, and L. L. Littlejohn, Distributional solutions of ordinary differential equations, Canad. Math. Soc. Conf. Proc. 8 (1987), 227-246. MR 909913 (89a:34040)
  • [13] L. L. Littlejohn and R. P. Kanwal, Distributional solutions of the hypergeometric differential equation, J. Math. Anal. Appl. 122 (1987), 325-345. MR 877816 (88b:33008)
  • [14] R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), 604-626. MR 0493141 (58:12172)
  • [15] O. Njåstad, An extended Hamburger moment problem, Proc. Edinburgh Math. Soc. 28 (1985), 167-183. MR 806749 (86k:44011)
  • [16] L. Schwartz, Théorie des distributiones, Hermann, Paris, 1957.
  • [17] J. A. Shohat and J. D. Tamarkin, The problem of moments, Amer. Math. Soc., Providence, RI, 1943. MR 0008438 (5:5c)
  • [18] W. Wasow, Asymptotic expansions for ordinary differential equations, Wiley, New York, 1965. MR 0203188 (34:3041)
  • [19] J. Wiener, Generalized function solutions of differential and functional differential equations, J. Math. Anal. Appl. 88 (1982), 170-182. MR 661410 (83g:34005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A60, 33C45

Retrieve articles in all journals with MSC: 44A60, 33C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1164143-7
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society