Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectral types of uniform distribution


Author: Geon H. Choe
Journal: Proc. Amer. Math. Soc. 120 (1994), 715-722
MSC: Primary 47A35; Secondary 11K06, 28D05
DOI: https://doi.org/10.1090/S0002-9939-1994-1169880-6
MathSciNet review: 1169880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the spectral types of unitary operator $ U$ on $ {L^2}(\mathbb{T})$ defined by $ (Uf)(x) = A(x)f(x + \theta ),\vert A(x)\vert = 1$ a.e., where $ \mathbb{T}$ is the unit circle identified with the half open interval $ [0,1)$ and $ \theta $ is irrational. It is shown that Veech's result on the Kronecker-Weyl theorem modulo $ 2$ is closely related to the spectral type of $ U$.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Choe, Ergodicity and irrational rotations, Proc. Roy. Irish Acad Sect. A (to appear). MR 1368826 (97m:28017)
  • [2] -, Products of operators with singular continuous spectra, Proc. Sympos. Pure Math., vol. 51, part 2, Amer. Math. Soc, Providence, RI, 1990, pp. 65-68. MR 1077421 (91h:47006)
  • [3] -, Ph.D. Thesis, University of California, Berkeley, 1987.
  • [4] J. P. Conze, Remarques sur les transformations cylindriques et les equations fonctionnelles, Séminaire de Probabilité I, Rennes, France, 1976. MR 0584021 (58:28427)
  • [5] P. Gabriel, M. Lemańczyk, and P. Liardet, Ensemble d'invariants pour les produits croiss de Anzai, Mem. Soc. Math. France 47 (1991).
  • [6] H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199. MR 847339 (88f:22020)
  • [7] -, The spectral theorem, Lecture Notes in Math., vol. 1227, Springer-Verlag, New York, 1986. MR 873504 (88k:47027)
  • [8] A. Iwanik, M. Lemańczyk, and D. Rudolph, Absolutely continuous cocycles over irrational rotations, preprint, 1991.
  • [9] A. Ya. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, 1964. MR 0161833 (28:5037)
  • [10] H. Medina, Hilbert space operators arising from irrational rotations on the circle group, Ph.D Thesis, University of California, Berkeley, 1992.
  • [11] K. D. Merrill, Cohomology of step functions under irrational rotations, Israel J. Math. 52 (1985), 320-340. MR 829362 (88b:39009)
  • [12] M. Stewart, Irregularities of uniform distribution, Acta Math. Sci. Hungar. 37 (1981), 185-221. MR 616890 (82k:10072)
  • [13] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and Kronecker-Weyl theorem $ mod\;2$, Trans. Amer. Math. Soc. 140 (1969), 1-33. MR 0240056 (39:1410)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35, 11K06, 28D05

Retrieve articles in all journals with MSC: 47A35, 11K06, 28D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169880-6
Keywords: Maximal spectral type, uniform distribution modulo $ 1$, coboundary
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society