Almost periodic homeomorphisms and -adic transformation groups on compact -manifolds

Author:
Joo S. Lee

Journal:
Proc. Amer. Math. Soc. **121** (1994), 267-273

MSC:
Primary 57M60; Secondary 57S20, 57S25

MathSciNet review:
1233977

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that regularly almost periodic is equivalent to nearly periodic for homeomorphisms on compact metric spaces and give an example to show that the above is false without the compactness assumption. We also prove that the following statement is equivalent to the Hilbert-Smith conjecture on compact 3-manifolds : If *h* is almost periodic on , with *h* = identity on , then *h* = identity on .

**[B1]**Beverly L. Brechner,*Almost periodic homeomorphisms of 𝐸² are periodic*, Pacific J. Math.**59**(1975), no. 2, 367–374. MR**0388361****[B2]**-,*Prime ends and group actions*, preprint.**[Br]**Glen E. Bredon,*Introduction to compact transformation groups*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR**0413144****[D]**Andreas Dress,*Newman’s theorems on transformation groups*, Topology**8**(1969), 203–207. MR**0238353****[F]**N. E. Foland,*A characterization of the almost periodic homeomorphisms on the closed 2-cell*, Proc. Amer. Math. Soc.**16**(1965), 1031–1034. MR**0180958**, 10.1090/S0002-9939-1965-0180958-8**[G1]**Walter Helbig Gottschalk and Gustav Arnold Hedlund,*Topological dynamics*, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R. I., 1955. MR**0074810****[G2]**W. H. Gottschalk,*Minimal sets: an introduction to topological dynamics*, Bull. Amer. Math. Soc.**64**(1958), 336–351. MR**0100048**, 10.1090/S0002-9904-1958-10223-2**[K]**H. T. Ku, M. C. Ku, and L. M. Mann,*Newman's theorem and the Hilbert-Smith conjecture*, Group Actions on Manifolds, Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 489-491.**[M]**L. F. McAuley,*A p-adic group cannot act effectively as a transformation group on a n-manifold*(*Hilbert Fifth Problem*), preprint.**[N]**M. H. A. Newman,*A theorem on periodic transformations of spaces*, Quart. J. Math**2**(1931), 1-9.**[R]**Frank Raymond,*Cohomological and dimension theoretical properties of orbit spaces of 𝑝-adic actions*, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 354–365. MR**0260925****[S1]**P. A. Smith,*Transformations of finite period. II*, Ann. of Math. (2)**40**(1939), 690–711. MR**0000177****[S2]**P. A. Smith,*Transformations of finite period. III. Newman’s theorem*, Ann. of Math. (2)**42**(1941), 446–458. MR**0004128****[S3]**P. A. Smith,*Periodic and nearly periodic transformations*, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 159–190. MR**0005302****[vK]**E. R. Van Kampen,*The Topological Transformations of a Simple Closed Curve Into Itself*, Amer. J. Math.**57**(1935), no. 1, 142–152. MR**1507062**, 10.2307/2372026**[Y]**Chung-Tao Yang,*𝑝-adic transformation groups*, Michigan Math. J.**7**(1960), 201–218. MR**0120310**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57M60,
57S20,
57S25

Retrieve articles in all journals with MSC: 57M60, 57S20, 57S25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1233977-2

Keywords:
Manifold,
almost periodic homeomorphism,
the Hilbert-Smith conjecture

Article copyright:
© Copyright 1994
American Mathematical Society