Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A noniterative $ 2$-adic statement of the $ 3N+1$ conjecture


Author: Daniel J. Bernstein
Journal: Proc. Amer. Math. Soc. 121 (1994), 405-408
MSC: Primary 11S85; Secondary 11B75
DOI: https://doi.org/10.1090/S0002-9939-1994-1186982-9
MathSciNet review: 1186982
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Associated with the $ 3N + 1$ problem is a permutation $ \Phi $ of the 2-adic integers. The $ 3N + 1$ conjecture is equivalent to the conjecture that 3Q is an integer if $ \Phi (Q)$ is a positive integer. We state a new definition of $ \Phi $. To wit: Q and $ N = \Phi (Q)$ are linked by the equations $ Q = {2^{{d_0}}} + {2^{{d_1}}} + \cdots $ and $ N = ( - 1/3){2^{{d_0}}} + ( - 1/9){2^{{d_1}}} + ( - 1/27){2^{{d_2}}} + \cdots $ with $ 0 \leq {d_0} < {d_1} < \cdots $. We list four applications of this definition.


References [Enhancements On Off] (What's this?)

  • [1] Ethan Akin, $ 3x + 1$, unpublished manuscript.
  • [2] R. E. Crandall, On the $ 3x + 1$ problem, Math. Comp. 32 (1978), 1281-1292. MR 0480321 (58:494)
  • [3] Donald E. Knuth, The art of computer programming, volume 2: Seminumerical algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981. MR 633878 (83i:68003)
  • [4] Jeffrey C. Lagarias, The $ 3x + 1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. MR 777565 (86i:11043)
  • [5] Helmut Müller, Das $ 3n + 1$ Problem, Mitt. Math. Ges. Hamburg 12 (1991), 231-251. MR 1144786 (93c:11053)
  • [6] Ray P. Steiner, On the $ Qx + 1$ problem, Q odd. II, Fibonacci Quart. 19 (1981), 293-296. MR 640176 (84m:10007b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11S85, 11B75

Retrieve articles in all journals with MSC: 11S85, 11B75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186982-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society