Solutions of threeterm relations in several variables
Author:
Yuan Xu
Journal:
Proc. Amer. Math. Soc. 122 (1994), 151155
MSC:
Primary 33C50; Secondary 39A10, 41A05
MathSciNet review:
1211589
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A system of multivariate orthogonal polynomials satisfies a matrix equation which plays the role of a threeterm relation of the orthogonal polynomial of one variable. However, unlike the case of one variable, there does not exist a second solution of this matrix equation that is linearly independent to the orthogonal polynomials. In particular, there is no analogy of the associated polynomials in several variables.
 [1]
N. I. Akheizer, The classical moment problem and some related questions in analysis, Hafner, New York, 1965.
 [2]
T.
S. Chihara, An introduction to orthogonal polynomials, Gordon
and Breach Science Publishers, New YorkLondonParis, 1978. Mathematics and
its Applications, Vol. 13. MR 0481884
(58 #1979)
 [3]
M.
A. Kowalski, The recursion formulas for orthogonal polynomials in
𝑛\ variables, SIAM J. Math. Anal. 13 (1982),
no. 2, 309–315. MR 647128
(83j:42022a), http://dx.doi.org/10.1137/0513022
 [4]
M.
A. Kowalski, Orthogonality and recursion formulas for polynomials
in 𝑛\ variables, SIAM J. Math. Anal. 13
(1982), no. 2, 316–323. MR 647129
(83j:42022b), http://dx.doi.org/10.1137/0513023
 [5]
Marshall
Harvey Stone, Linear transformations in Hilbert space,
American Mathematical Society Colloquium Publications, vol. 15,
American Mathematical Society, Providence, RI, 1990. Reprint of the 1932
original. MR
1451877 (99k:47001)
 [6]
Yuan
Xu, On multivariate orthogonal polynomials, SIAM J. Math.
Anal. 24 (1993), no. 3, 783–794. MR 1215438
(94i:42031), http://dx.doi.org/10.1137/0524048
 [7]
Yuan
Xu, Multivariate orthogonal polynomials
and operator theory, Trans. Amer. Math.
Soc. 343 (1994), no. 1, 193–202. MR 1169912
(94g:42040), http://dx.doi.org/10.1090/S0002994719941169912X
 [8]
Yuan
Xu, Unbounded commuting operators and
multivariate orthogonal polynomials, Proc.
Amer. Math. Soc. 119 (1993), no. 4, 1223–1231. MR 1165065
(94a:47038), http://dx.doi.org/10.1090/S00029939199311650657
 [9]
Yuan
Xu, Block Jacobi matrices and zeros of
multivariate orthogonal polynomials, Trans.
Amer. Math. Soc. 342 (1994), no. 2, 855–866. MR 1258289
(95g:42041), http://dx.doi.org/10.1090/S00029947199412582897
 [1]
 N. I. Akheizer, The classical moment problem and some related questions in analysis, Hafner, New York, 1965.
 [2]
 T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, vol. 13, Gordon & Breach, New York, 1978. MR 0481884 (58:1979)
 [3]
 M. A. Kowalski, The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13 (1982), 309315. MR 647128 (83j:42022a)
 [4]
 , Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (1982), 316323. MR 647129 (83j:42022b)
 [5]
 M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, RI, 1932; reprinted, 1983. MR 1451877 (99k:47001)
 [6]
 Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), 783794. MR 1215438 (94i:42031)
 [7]
 , Multivariate orthogonal polynomials and operator theory, Trans. Amer. Math. Soc. (to appear). MR 1169912 (94g:42040)
 [8]
 , Unbounded commuting operators and multivariate orthogonal polynomials, Proc. Amer. Math. Soc. 119 (1993), 12231231. MR 1165065 (94a:47038)
 [9]
 , Block Jacobi matrices and zeros of multivariate orthogonal polynomials, Trans. Amer. Math. Soc. (to appear). MR 1258289 (95g:42041)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
33C50,
39A10,
41A05
Retrieve articles in all journals
with MSC:
33C50,
39A10,
41A05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199412115894
PII:
S 00029939(1994)12115894
Keywords:
Threeterm relation,
multivariate orthogonal polynomials,
associated polynomials
Article copyright:
© Copyright 1994
American Mathematical Society
