Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free actions of zero-dimensional compact groups on Menger manifolds


Author: Katsuro Sakai
Journal: Proc. Amer. Math. Soc. 122 (1994), 647-648
MSC: Primary 57S10; Secondary 22C05, 54F15, 54H15
DOI: https://doi.org/10.1090/S0002-9939-1994-1249889-4
MathSciNet review: 1249889
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every separable zero-dimensional compact group acts freely on any Menger manifold M. In case M is compact, this result was proved by Dranishnikov. Here is provided an alternative short proof.


References [Enhancements On Off] (What's this?)

  • [Be] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc., vol. 71, Amer. Math. Soc., Providence, RI, 1988. MR 920964 (89g:54083)
  • [Dr] A. N. Dranishnikov, On free actions of zero-dimensional compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 212-228; English transl., Math. USSR-Izv 32 (1989), 217-232. MR 936531 (90e:57065)
  • [GHW] D. J. Garity, J. P. Henderson, and D. G. Wright, Menger spaces and inverse limits, Pacific J. Math. 131 (1988), 249-259. MR 922217 (89d:54026)
  • [Po] L. S. Pontryagin, Continuous groups, 4th ed., Nauka, Moscow, 1984; English transl., Topological groups, 2nd ed., Gordon and Breach, New York, 1966. MR 767087 (85k:22002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S10, 22C05, 54F15, 54H15

Retrieve articles in all journals with MSC: 57S10, 22C05, 54F15, 54H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1249889-4
Keywords: Menger manifold, free action, 0-dimensional compact group
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society