Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A comparison between Euler and Cesàro methods of summability


Authors: B. Kuttner and M. R. Parameswaran
Journal: Proc. Amer. Math. Soc. 122 (1994), 787-790
MSC: Primary 40D20; Secondary 40G05
DOI: https://doi.org/10.1090/S0002-9939-1994-1205495-9
MathSciNet review: 1205495
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that there are sequences that are summable by every Cesàro method $ {C_r}\;(r > 0)$ but are not summable by any Euler method $ {E_p}\;(0 < p < 1)$. It is proved here that on the other hand there are sequences that are summable by every Euler method $ {E_p}\;(0 < p < 1)$ but are not summable by any Cesaro method.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Hardy, Divergent series, Oxford Univ. Press, London, 1949. MR 0030620 (11:25a)
  • [2] K. Knopp, Über das Eulersche Summierungsverfahren, Math. Z. 15 (1922), 226-253. MR 1544570
  • [3] M. R. Parameswaran, On a comparison between the Cesàro and Borel methods of summability, J. Indian Math. Soc. (2) 22 (1958), 85-92. MR 0130508 (24:A369)
  • [4] A. Wilansky and K. Zeller, Summation of bounded sequences; topological methods, Trans. Amer. Math. Soc. 78 (1955), 501-509. MR 0067220 (16:690f)
  • [5] K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, Springer-Verlag, Heidelberg, Berlin, and New York, 1970. MR 0264267 (41:8863)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40D20, 40G05

Retrieve articles in all journals with MSC: 40D20, 40G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1205495-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society