Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Pathwise connectivity of the spatial numerical range

Author: Tofik Y. Kuliyev
Journal: Proc. Amer. Math. Soc. 122 (1994), 1173-1174
MSC: Primary 47A12
MathSciNet review: 1211582
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that the spatial numerical range of a given operator on a separable Banach space is pathwise connected.

References [Enhancements On Off] (What's this?)

  • [1] George Luna, On the numerical range in reflexive Banach spaces, Math. Ann. 231 (1977/78), no. 1, 33–38. MR 0500208
  • [2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
  • [3] Herbert Weigel, Reflexivity and numerical range, Exposition. Math. 3 (1985), no. 4, 373–374. MR 844417
  • [4] Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A12

Retrieve articles in all journals with MSC: 47A12

Additional Information

Keywords: Numerical range, duality mapping, pathwise connectivity
Article copyright: © Copyright 1994 American Mathematical Society