Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pathwise connectivity of the spatial numerical range


Author: Tofik Y. Kuliyev
Journal: Proc. Amer. Math. Soc. 122 (1994), 1173-1174
MSC: Primary 47A12
DOI: https://doi.org/10.1090/S0002-9939-1994-1211582-1
MathSciNet review: 1211582
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that the spatial numerical range of a given operator on a separable Banach space is pathwise connected.


References [Enhancements On Off] (What's this?)

  • [1] G. Luna, On the numerical range in reflexive Banach spaces, Math. Ann. 231 (1977), 33-38. MR 0500208 (58:17887)
  • [2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser., vol. 2, Cambridge Univ. Press, Cambridge, 1971. MR 0288583 (44:5779)
  • [3] H. Weigel, Reflexivity and numerical range, Exposition. Math. 3 (1985), 373-374. MR 844417 (87m:47016)
  • [4] R. Engelking, General topology, Heldermann, Berlin, 1989. MR 1039321 (91c:54001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A12

Retrieve articles in all journals with MSC: 47A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1211582-1
Keywords: Numerical range, duality mapping, pathwise connectivity
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society