Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The existence of flat covers over Noetherian rings of finite Krull dimension

Author: Jin Zhong Xu
Journal: Proc. Amer. Math. Soc. 123 (1995), 27-32
MSC: Primary 16D40; Secondary 13C11
MathSciNet review: 1242111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bass characterized the rings R with the property that every left R-module has a projective cover. These are the left perfect rings. A ring is left perfect if and only if the class of projective R-modules coincides with the class of flat R-modules, so the projective covers over these rings are flat covers. This prompts the conjecture that over any ring R, every left R-module has a flat cover. Known classes of rings for which the conjecture holds include Von Neumann regular rings (trivially), the left perfect rings (Bass), Prufer domains (Enochs), and then more generally, all right coherent rings of finite weak global dimension (Belshoff, Enochs, Xu).

In this paper we show that the conjecture holds for all commutative Noetherian rings of finite Krull dimension and so for all local rings and all coordinate rings of affine algebraic varieties.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and I. Reiten, Applications of contraviariantly finite subcategories, Adv. Math. 86 (1991), 111-152. MR 1097029 (92e:16009)
  • [2] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 0157984 (28:1212)
  • [3] R. Belshoff, E. Enochs, and J. Xu, The existence of flat covers, Proc. Amer. Math. Soc. (to appear). MR 1209416 (95b:16001)
  • [4] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209. MR 636889 (83a:16031)
  • [5] -, Torsion free covering modules, Proc. Amer. Math. Soc 14 (1963), 884-889. MR 0168617 (29:5877)
  • [6] -, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), 179-184. MR 754698 (85j:13016)
  • [7] -, Covers by flat modules and submodules of flat modules, J. Pure Appl. Algebra 5 (1989), 33-38. MR 984044 (89m:16038)
  • [8] L. Gruson and C. U. Jensen, Dimensions cohomolgiques relieés aux foncteurs $ \mathop {\lim }\limits_ \leftarrow $, Lecture Notes in Math., vol. 867, Springer-Verlag, New York, pp. 234-294. MR 633523 (83d:16026)
  • [9] M. Raynaud and L. Gruson, Critères de platitude et de projectivite, Invent. Math. 13 (1971), 303-310. MR 0308104 (46:7219)
  • [10] B. Stenstrom, Rings of quotients: An introduction to methods of ring theory, Springer-Verlag, New York, 1975. MR 0389953 (52:10782)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16D40, 13C11

Retrieve articles in all journals with MSC: 16D40, 13C11

Additional Information

Keywords: Flat covers, Krull dimension, cotorsion modules
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society