Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free product von Neumann algebras of type $ {\rm III}$


Author: Lance Barnett
Journal: Proc. Amer. Math. Soc. 123 (1995), 543-553
MSC: Primary 46L10; Secondary 46L35
DOI: https://doi.org/10.1090/S0002-9939-1995-1224611-7
MathSciNet review: 1224611
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will show that most free products of von Neumann algebras with respect to nontracial states produce type $ {\text{III}_\lambda }$ factors $ (\lambda \ne 0)$. In addition, for all such $ \lambda $, examples can be obtained with the component algebras being finite dimensional. Finally, conditions will be given to ensure that these free products will be full factors.


References [Enhancements On Off] (What's this?)

  • [1] D. Avitzour, Free products of $ {C^ \ast }$-algebra, Trans. Amer. Math. Soc. 271 (1982), 423-435. MR 654842 (83h:46070)
  • [2] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133-252. MR 0341115 (49:5865)
  • [3] -, Almost periodic states and factors of type $ {\text{III}_1}$, J. Funct. Anal. 16 (1974), 415-445. MR 0358374 (50:10840)
  • [4] R. Herman and M. Takesaki, States and automorphism groups of operator algebras, Comm. Math. Phys. 19 (1970), 142-160. MR 0270167 (42:5060)
  • [5] D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461. MR 0281018 (43:6737)
  • [6] L. Pukanszky, Some examples of factors, Publ. Math. Debrecen 4 (1956), 135-156. MR 0080894 (18:323a)
  • [7] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972), 306-321. MR 0303307 (46:2445)
  • [8] -, Theory of operator algebras. II, UCLA Lecture Notes, 1990.
  • [9] J. Tomiyama, On the projections of norm one in $ {W^ \ast }$-algebras. III, Tôhoku Math. J. (2) 11 (1959), 125-129. MR 0107825 (21:6547)
  • [10] D. Voiculescu, Symmetries of some reduced free product $ {C^ \ast }$-algebras, Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Math., vol. 1132, Springer-Verlag, New York, 1985, pp. 556-588. MR 799593 (87d:46075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 46L35

Retrieve articles in all journals with MSC: 46L10, 46L35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1224611-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society