Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Numerical radius preserving operators on $ B(H)$


Author: Jor-Ting Chan
Journal: Proc. Amer. Math. Soc. 123 (1995), 1437-1439
MSC: Primary 47A12; Secondary 47B49
DOI: https://doi.org/10.1090/S0002-9939-1995-1231293-7
MathSciNet review: 1231293
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let H be a Hilbert space over $ \mathbb{C}$ and let $ B(H)$ denote the vector space of all bounded linear operators on H. We prove that a linear isomorphism $ T:B(H) \to B(H)$ is numerical radius-preserving if and only if it is a multiply of a $ {C^ \ast }$-isomorphism by a scalar of modulus one.


References [Enhancements On Off] (What's this?)

  • [1] C. K. Li, Linear operators preserving the numerical radius of matrics, Proc. Amer. Math. Soc. 99 (1987), 601-608. MR 877024 (87m:15004)
  • [2] C. K. Li and N. K. Tsing, Linear operators that preserve the c-numerical range or radius of matrices, Linear and Multilinear Algebra 23 (1988), 27-46. MR 943767 (89f:15020)
  • [3] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. MR 0003467 (2:224d)
  • [4] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1982. MR 675952 (84e:47001)
  • [5] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. MR 832991 (87m:47011)
  • [6] R. V. Kadison, Isometries of operator algebra, Ann. of Math. (2) 54 (1951), 325-338. MR 0043392 (13:256a)
  • [7] -, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. (2) 56 (1952), 494-503. MR 0051442 (14:481c)
  • [8] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. I, Academic Press, New York, 1983. MR 719020 (85j:46099)
  • [9] V. J. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), 143-147. MR 0388104 (52:8941)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A12, 47B49

Retrieve articles in all journals with MSC: 47A12, 47B49


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1231293-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society