On a sequence transformation with integral coefficients for Euler's constant

Author:
C. Elsner

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1537-1541

MSC:
Primary 11Y60; Secondary 40A05, 65B05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1233969-4

MathSciNet review:
1233969

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote Euler's constant, and let

The coefficients are explicitly given and are bounded by .

**[1]**P. Appell,*Sur la nature arithmétique de la constante d'Euler*, C. R. Acad. Sci. I Math.**15**(1926), 897-899.**[2]**R. G. Ayoub,*Partial triumph or total failure*, Math. Intelligencer**7**(1985), 55-58. MR**784944 (86i:01001)****[3]**L. B. W. Jolley,*Summation of series*, second edition, Dover, New York, 1961. MR**0134458 (24:B511)****[4]**D. E. Knuth,*Euler's constant to 1271 places*, Math. Comp.**16**(1962), 275-280. MR**0148255 (26:5763)****[5]**I. M. Longman,*Increasing the convergence rate of series*, Appl. Math. Comput.**24**(1987), 77-89. MR**906130 (88h:65013)****[6]**J. Ser,*L'intermediaire des mathematiciens*, Gauthier-Villars, Paris, Ser. 2, 1925.**[7]**J. Wimp,*Sequence transformations and their applications*, Academic Press, New York, 1981. MR**615250 (84e:65005)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11Y60,
40A05,
65B05

Retrieve articles in all journals with MSC: 11Y60, 40A05, 65B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1233969-4

Article copyright:
© Copyright 1995
American Mathematical Society