Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A note on Morita equivalence of twisted $ C\sp *$-dynamical systems


Author: S. Kaliszewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 1737-1740
MSC: Primary 46L55; Secondary 46L05
MathSciNet review: 1239797
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary proof that every twisted $ {C^ \ast }$-dynamical system is Morita equivalent to an ordinary system. As a corollary we prove the equivalence $ {C_0}(G/H,A){ \times _{\tilde \alpha ,\tilde u}}G \sim A{ \times _{\alpha ,u}}H$ for Busby-Smith twisted dynamical systems, generalizing an important result of Green.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46L05

Retrieve articles in all journals with MSC: 46L55, 46L05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1239797-8
PII: S 0002-9939(1995)1239797-8
Keywords: $ {C^ \ast }$-algebra, dynamical system, Morita equivalence
Article copyright: © Copyright 1995 American Mathematical Society