On the torsion part of with respect to the action of a derivation

Author:
Brian Coomes

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2191-2197

MSC:
Primary 34A20; Secondary 12H05, 34C99

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273485-7

MathSciNet review:
1273485

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the torsion part of with respect to the action of a derivation is algebraically closed in if the flow associated with the derivation is analytic on . We also present a connection between this result and Keller's Jacobian conjecture.

**[1]**H. Bass,*Differential structure of étale extensions of polynomial algebras*, Commutative Algebra (Proceedings of a microprogram held June 15-July 2, 1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer-Verlag, New York, 1989, pp. 69-109. MR**1015514 (90m:12009)****[2]**H. Bass, E. H. Connell, and D. Wright,*The Jacobian conjecture*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 287-330. MR**663785 (83k:14028)****[3]**H. Bass and G. H. Meisters,*Polynomial flows in the plane*, Adv. Math.**55**(1985), 173-203. MR**772614 (86c:58127)****[4]**E. Connell and J. Drost,*Conservative and divergence free algebraic vector fields*, Proc. Amer. Math. Soc.**87**(1983), 607-612. MR**687626 (84i:13014)****[5]**B. Coomes,*The Lorenz system does not have a polynomial flow*, J. Differential Equations**82**(1989), 386-407. MR**1027976 (91b:58213)****[6]**-,*Polynomial flows on*, Trans. Amer. Math. Soc.**320**(1990), 493-506. MR**998353 (90k:58180)****[7]**-,*P-symmetries of two-dimensional p-f vector fields*, Differential Integral Equations**5**(1992), 461-480. MR**1148229 (93b:34012)****[8]**B. Coomes and V. Zurkowski,*Linearization of polynomial flows and spectra of derivations*, J. Dynamics Differential Equations**3**(1991), 29-66. MR**1094723 (92m:34002)****[9]**O. Keller,*Ganze cremona-transformationen*, Monatsh. Math. Phys.**47**(1939), 299-306. MR**1550818****[10]**G. H. Meisters,*Jacobian problems in differential equations and algebraic geometry*, Rocky Mountain J. Math.**12**(1982), 679-705. MR**683862 (84c:58048)****[11]**-,*Polynomial flows on*, Dynamical Systems and Ergodic Theory, Papers from the 28th semester at the Stefan Banach International Mathematical Center (September 16-December 18, 1986), Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 9-24. MR**1102697 (92b:58060)****[12]**G. H. Meisters and C. Olech,*Global asymptotic stability for plane polynomial flows*, Časopis Pěst. Mat. 111 (1986), 123-126. MR**847311 (87k:34085)****[13]**-,*A poly-flow formulation of the Jacobian conjecture*, Bull. Polish Acad. Sci. Math.**35**(1987), 725-731. MR**961711 (89j:13005)****[14]**A. van den Essen,*Locally nilpotent and locally finite derivations with applications to polynomial flows and polynomial morphisms*, Proc. Amer. Math. Soc.**116**(1992), 861-871. MR**1111440 (93a:13003)****[15]**-,*Locally finite and locally nilpotent derivations with applications to polynomial flows, morphisms, and*-*actions*, II, Proc. Amer. Math. Soc.**121**(1994), 667-678. MR**1185282 (94i:13005)****[16]**G. Zampieri,*Finding domains of invertibility for smooth functions by means of attraction basins*, J. Differential Equations**104**(1993), 11-19. MR**1224119 (94e:26022)****[17]**V. Zurkowski,*Polynomial flows in the plane: a classification based on spectra of derivations*, preprint. MR**1339667 (96m:34004)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34A20,
12H05,
34C99

Retrieve articles in all journals with MSC: 34A20, 12H05, 34C99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273485-7

Article copyright:
© Copyright 1995
American Mathematical Society